References
- Anily, S. and Tzur, M. (2005), Shipping multiple items by capacitated vehicles: an optimal dynamic programming approach, Transportation Science, 39(2), 233-248. https://doi.org/10.1287/trsc.1030.0080
- Barbarosoglu, G. and Ozdamar, L. (2000), Analysis of solution space-dependent performance of simulated annealing: the case of the multi-level capacitated lot sizing problem, Computers and Operations Research, 27(9), 895-903. https://doi.org/10.1016/S0305-0548(99)00064-7
- Bitran, G. R. and Yanasse, H. H. (1982), Computational complexity of the capacitated lot size problem, Management Science, 28(10), 1174-1186. https://doi.org/10.1287/mnsc.28.10.1174
- Florian, M., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1980), Deterministic production planning: algorithms and complexity, Management Science, 26(7), 669-679. https://doi.org/10.1287/mnsc.26.7.669
- Fumero, F. and Vercellis, C. (1999), Synchronized development of production, inventory, and distribution schedules, Transportation Science, 33(3), 330- 340. https://doi.org/10.1287/trsc.33.3.330
- Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Pub., Reading, MA
- Hwang, H. and Sohn, K. I. (1985), An optimal policy for the dynamic transportation-inventory model with deteriorating items, IIE Transactions, 17(3), 233-241. https://doi.org/10.1080/07408178508975298
- Jaruphongsa, W., Cetinkaya, S., and Lee, C. Y. (2005), A dynamic lot-sizing model with multi-mode replenishments: polynomial algorithms for special cases with dual and multiple modes, IIE Transactions, 37(5), 453-467. https://doi.org/10.1080/07408170590918218
- Joo, C. M. and Kim, B. S. (2012), Non-identical parallel machine scheduling with sequence and machine dependent setup times using meta-heuristic algorithms, Industrial Engineering and Management Systems, 11(1), 114-122. https://doi.org/10.7232/iems.2012.11.1.114
- Kim, B. S. and Lee, W. S. (2012), A multi-product dynamic inbound ordering and shipment scheduling problem at a third-party warehouse, International Journal of Industrial Engineering, Forthcoming.
- Kirkpatrick, S., Gelatt, C. D. Jr., and Vecchi, M. P. (1983), Optimization by simulated annealing, Science, 220 (4598), 671-680. https://doi.org/10.1126/science.220.4598.671
- Lee, C. Y. (1989), A solution to the multiple set-up problem with dynamic demand, IIE Transactions, 21(3), 266-270. https://doi.org/10.1080/07408178908966231
- Lee, C. Y., Cetinkaya, S., and Jaruphongsa, W. (2003), A dynamic model for inventory lot sizing and outbound shipment scheduling at a third-party warehouse, Operations Research, 51(5), 735-747. https://doi.org/10.1287/opre.51.5.735.16752
- Lee, W. S., Han, J. H., and Cho, S. J. (2005), A heuristic algorithm for a multi-product dynamic lot-sizing and shipping problem, International Journal of Production Economics, 98(2), 204-214. https://doi.org/10.1016/j.ijpe.2004.05.025
- Lippman, S. A. (1969), Optimal inventory policy with multiple set-up costs, Management Science, 16(1), 118-138. https://doi.org/10.1287/mnsc.16.1.118
- Van Norden, L. and van de Velde, S. (2005), Multi-product lot-sizing with a transportation capacity reservation contract, European Journal of Operational Research, 165(1), 127-138. https://doi.org/10.1016/j.ejor.2003.04.008
- Wagner, H. M. and Whitin, T. M. (1958), Dynamic version of the economic lot size model, Management Science, 5(1), 89-96. https://doi.org/10.1287/mnsc.5.1.89
- Wolsey, L. A. (1998), Integer Programming, Wiley, New York, NY.
- Zangwill, W. I. (1969), A backlogging model and a multiechelon model of a dynamic economic lot size production system: a network approach, Management Science, 15(9), 506-527. https://doi.org/10.1287/mnsc.15.9.506