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A REMARK CONCERNING UNIVERSAL

CURVATURE IDENTITIES ON

4-DIMENSIONAL RIEMANNIAN MANIFOLDS

Yunhee Euh, Chohee Jeong, and JeongHyeong Park

Abstract. We shall prove the universality of the curvature identity for
the 4-dimensional Riemannian manifold using a different method than
that used by Gilkey, Park, and Sekigawa [5].

1. Introduction

Berger [1] derived a curvature identity on a 4-dimensional compact oriented
Riemannian manifold M = (M, g) from the generalized Gauss-Bonnet formula

32π2χ(M) =

∫

M

τ2 − 4|ρ|2 + |R|2dv,

where R is the curvature tensor, ρ is the Ricci tensor and τ is the scalar
curvature ofM . The curvature identity is the quadratic equation which involves
only the curvature tensor and not its covariant derivatives as follows:

(1)
1

4
(|R|2 − 4|ρ|2 + τ2)g − Ř+ 2ρ̌+ Lρ− τρ = 0.

Here,

Ř : Řij =
∑

a,b,c

RabciR
abc

j , ρ̌ : ρ̌ij =
∑

a

ρaiρ
a
j ,

L : (Lρ)ij = 2
∑

a,b

Riabjρ
ab.

Euh, Park, and Sekigawa [2] proved that Equation (1) holds on the space of
all Riemannian metrics on any 4-dimensional Riemannian manifold, and gave
some applications of the curvature identity [3, 4]. Labbi [7] showed the same
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phenomena occurs for the higher dimensional cases by using purely algebraic
computations in the ring of double forms and also provided some applications
of the curvature identity in [8]. Recently, Gilkey, Park, and Sekigawa [5] gave
a new proof of the curvature identity using heat trace methods. Here, we raise
the following question:

Question. Is there another curvature identity such as the quadratic curvature

identity (1) which holds on any 4-dimensional Riemannian manifold (M, g)?

In the present paper, we shall give an answer to the above Question with a
different method given by [5]. Namely, we shall prove the following theorem.

Main Theorem. The curvature identity (1) is universal as a symmetric 2-
form valued quadratic curvature identity for a 4-dimensional Riemannian man-

ifold.

The authors would like to express their thanks to Professor K. Sekigawa and
E. Puffini for their helpful comments and valuable suggestions. The authors
are also very grateful to the anonymous referee for the useful comments which
improved the manuscript.

2. Preliminary

LetM be anm-dimensional Riemannian manifold and I2
m,n(n is even) be the

space of symmetric 2-form valued invariants which are homogeneous of degree
n in the derivatives of the metric on M . In [5], Gilkey, Park, and Sekigawa
proved that the universality of the curvature identity in the setting of the space
I2
4,4. Now, we set

Φ1 := |R|2g, Φ2 := |ρ|2g, Φ3 := τ2g, Φ4 := Ř, Φ5 := ρ̌,

Φ6 := Lρ, Φ7 := τρ, Φ8 = (△τ)g, Φ9 = Hess τ, Φ10 = △̃ρ,

where △̃ρ denotes the rough Laplacian acting on the Ricci tensor ρ, namely
locally expressed by (△̃ρ)ij =

∑

a ∇
a∇aρij . Then, we have the following:

Lemma 2.1 ([5]).

(1) I2
m,0 = Span {g}.

(2) I2
m,2 = Span {τg, ρ}.

(3) I2
m,4 = Span {Φ1,Φ2, . . . ,Φ7,Φ8,Φ9,Φ10}.

In [5, 6], Gilkey et al. proved that the curvature identity

(2)
λ

4
Φ1 − λΦ2 +

λ

4
Φ3 − λΦ4 + 2λΦ5 + λΦ6 − λΦ7 = 0

for any constant λ(6= 0), is the only universal curvature identity of this form
if m = 4 ([5], Theorem 1.2(3) and Lemma 1.4(2)). We may easily check that
the curvature identities (1) and (2) are equivalent to each other. We emphasize



UNIVERSAL CURVATURE IDENTITIES ON 4-MANIFOLDS 1083

that the invariance theory established by H. Weyl plays an important role in
their proof of [5, Theorem 1.2].

Here, we give another direct proof for the same result by using several test
Riemannian manifolds of dimension 4.

3. Proof of Main Theorem

We assume that the equality

(3)

10
∑

i=1

ciΦi = 0

holds for all 4-dimensional Riemannian manifolds. To prove Main Theorem, it
is sufficient to prove that c1 = λ

4
, c2 = −λ, c3 = λ

4
, c4 = −λ, c5 = 2λ, c6 = λ,

c7 = −λ, c8 = c9 = c10 = 0.
Applying (3) to the test manifolds in Cases I, II, III, IV and V, we will

determine the coefficients ci’s such that
∑

i ciΦi = 0 (i = 1, . . . , 10) by applying
the method of universal examples. This is the way we can show whether the
curvature identity (1) is universal or not.

Case I. Let M be a locally product of Riemannian surfaces M2(a) and M2(b)
of nonzero constant Gaussian curvatures a and b. Let {e1, e2} and {e3, e4} be
the orthonormal basis of M2(a) and M2(b), respectively. Then we have the
following:

(4)

Φ1 = 4(a2 + b2)I, Φ2 = 2(a2 + b2)I, Φ3 = 4(a+ b)2I,

Φ4 =









2a2 0 0 0
0 2a2 0 0
0 0 2b2 0
0 0 0 2b2









, Φ5 =









a2 0 0 0
0 a2 0 0
0 0 b2 0
0 0 0 b2









,

Φ6 =









2a2 0 0 0
0 2a2 0 0
0 0 2b2 0
0 0 0 2b2









, Φ7 = 2(a+ b)









a 0 0 0
0 a 0 0
0 0 b 0
0 0 0 b









,

Φ8 = Φ9 = Φ10 = 0.

From (4), we can get two different equations such that
∑

i ciΦi = 0 :
(I-i) (1,1)-component (or (2,2)-component)

(4c1+2c2+4c3+2c4+c5+2c6+2c7)a
2+(8c3+2c7)ab+(4c1+2c2+4c3)b

2 = 0.

(I-ii) (3,3)-component (or (4,4)-component)

(4c1+2c2+4c3)a
2+(8c3+2c7)ab+(4c1+2c2+4c3+2c4+c5+2c6+2c7)b

2 = 0.
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We set c7 = −λ. Then from (I-i) and (I-ii), we have the following relations:

(5)

c3 =
1

4
λ,

4c1 + 2c2 = −λ,

2c4 + c5 + 2c6 = 2λ.

Case II. Let M be a product of 3-dimensional Riemannian manifold M3(a)
of nonzero constant sectional curvature a and a real line R. Let {e1, e2, e3} be
the orthonormal basis of M3(a). Then we have the following:

(6)

Φ1 = 12a2I, Φ2 = 12a2I, Φ3 = 36a2I,

Φ4 = 4a2









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









, Φ5 = 4a2









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









,

Φ6 = 8a2









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









, Φ7 = 12a2









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









,

Φ8 = Φ9 = Φ10 = 0.

From (6), we can get two different equations such that
∑

i ciΦi = 0:
(II-i) (1,1)-component ((2,2) or (3,3)-component)

(3c1 + 3c2 + 9c3 + c4 + c5 + 2c6 + 3c7)a
2 = 0.

(II-ii) (4,4)-component

(c1 + c2 + 3c3)a
2 = 0.

From (II-i) and (II-ii), we have the following relation:

c4 + c5 + 2c6 + 3c7 = 0,

and hence, since c7 = −λ, we get

(7) c4 + c5 + 2c6 = 3λ.

From (5) and (7), we have

(8) c4 = −λ, c5 + 2c6 = 4λ.

Case III. Let M = M4(a) be a space form of nonzero constant sectional
curvature a. Then we have the following:

(9)

Φ1 = 24a2I, Φ2 = 36a2I, Φ3 = 144a2I,

Φ4 = 6a2I, Φ5 = 9a2I, Φ6 = 18a2I,

Φ7 = 36a2I, Φ8 = Φ9 = Φ10 = 0.
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From (9), we can get an equation such that
∑

i ciΦi = 0:
(III) (1,1)-component ((2,2), (3,3), or (4,4)-component)

(24c1 + 36c2 + 144c3 + 6c4 + 9c5 + 18c6 + 36c7)a
2 = 0.

From (III-i), we have the following relation:

8c1 + 12c2 + 48c3 + 2c4 + 3c5 + 6c6 + 12c7 = 0.

Since c7 = −λ, from (5) and (8), we get

(10) c1 =
λ

4
, c2 = −λ.

Case IV. ([3], Example 3.7) Let g = span
R
{e1, e2, e3, e4} be a 4-dimensional

real Lie algebra equipped with the following Lie bracket operation:

(11)
[e1, e2] = ae2, [e1, e3] = −ae3 − be4, [e1, e4] = be3 − ae4,

[e2, e3] = 0, [e2, e4] = 0, [e3, e4] = 0,

where a(6= 0), b are constant. We define an inner product 〈, 〉 on g by 〈ei, ej〉 =
δij . Let G be a connected and simply connected solvable Lie group with the
Lie algebra g of G and g the G-invariant Riemannian metric on G determined
by 〈, 〉. From (11), by direct calculations, we have

(12)
R1212 = a2, R1313 = a2, R1414 = a2,

R2323 = −a2, R2424 = −a2, R3434 = a2,

and otherwise being zero up to sign.

(ρ) =









−3a2 0 0 0
0 a2 0 0
0 0 −a2 0
0 0 0 −a2









, τ = −4a2.

Then, we have the following:

(13)

Φ1 = 24a4I, Φ2 = 12a4I, Φ3 = 16a4I, Φ4 = 6a4I,

Φ5 = a4









9 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, Φ6 = 2a4









1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 5









,

Φ7 = 4a4









3 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1









, Φ10 = a4









8 0 0 0
0 −8 0 0
0 0 −4 0
0 0 0 −4









,

Φ8 = Φ9 = 0.

From (13), we can get three different equations such that
∑

i ciΦi = 0:
(IV-i) (1,1)-component

(14) (24c1 + 12c2 + 16c3 + 6c4 + 9c5 + 2c6 + 12c7+8c10)a
4 = 0.
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(IV-ii) (2,2)-component

(15) (24c1 + 12c2 + 16c3 + 6c4 + c5 + 2c6 − 4c7−8c10)a
4 = 0.

(IV-iii) (3,3)-component (or (4,4)-component)

(16) (24c1 + 12c2 + 16c3 + 6c4 + c5 + 10c6 + 4c7−4c10)a
4 = 0.

Thus, from (14), taking account of (5), (8), (10) and a 6= 0, we have

(17) −20λ+ 9c5 + 2c6+8c10 = 0.

Thus, from (15), we have

(18) −4λ+ c5 + 2c6 +−8c10 = 0.

Then, from (17) and (18), we have

(19) 5c5 + 2c6 = 12λ.

Thus, from (8) and (19), we have

(20) c5 = 2λ, c6 = λ.

Thus, (17) and (20), we have

(21) c10 = 0.

Case V. Let M be the Riemannian product of Riemannian surfaces (M1, g1)
and (M2, g2), where the Riemannian metrics g1 and g2 are given locally by

(g1) =

(

e2σ1 0
0 e2σ1

)

, σ1 = x2
1 + x2

2

and

(g2) =

(

e2σ2 0
0 e2σ2

)

, σ2 = x2
3 + x2

4.

We set

e1 =
1

eσ1

∂

∂x1

, e2 =
1

eσ1

∂

∂x2

, e3 =
1

eσ2

∂

∂x3

, e4 =
1

eσ2

∂

∂x4

.

We denote by K1 and K2 the Gaussian curvatures of (M1, g1) and (M2, g2),
respectively. Then we have

(22) K1 = −4e−2σ1 , K2 = −4e−2σ2 .

Thus, from (22), we have the scalar curvature

τ = −8e−2σ1 − 8e−2σ2 .

Finally, we have

(23) Φ8 = −64
(

e−4σ1(2σ1 − 1) + e−4σ2(2σ2 − 1)
)

I, Φ9 =

(

A 0
0 B

)

,



UNIVERSAL CURVATURE IDENTITIES ON 4-MANIFOLDS 1087

where

A = −32e−4σ1

(

6x2
1 − 2x2

2 − 1 8x1x2

8x1x2 −2x2
1 + 6x2

2 − 1

)

,

B = −32e−4σ1

(

6x2
3 − 2x2

4 − 1 8x3x4

8x3x4 −2x2
3 + 6x2

4 − 1

)

.

Then, from (3) and (23), since the curvature identity (1) holds for any 4-
dimensional manifold, taking account of (5), (8), (10), (20) and (21), we have
the following coefficients ci’s:

c1 =
λ

4
, c2 = −λ, c3 =

λ

4
, c4 = −λ, c5 = 2λ,

c6 = λ, c7 = −λ, c8 = 0, c9 = 0, c10 = 0.

From the above observation, we see that Equation (1) is unique on a 4-
dimensional Riemannian manifold. That is, the curvature identity (1) for a
4-dimensional Riemannian manifold is universal.

Remark 3.1. The universal relation still holds in the pseudo-Riemannian setting
from the appropriate adjustments of sign of the metric in the test manifold.
We refer to [9].
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