REGULARITY AND GREEN'S RELATIONS ON SEMIGROUPS OF TRANSFORMATION PRESERVING ORDER AND COMPRESSION

Ping Zhao and Mei Yang

Abstract. Let $[n]=\{1,2, \ldots, n\}$, and let $P O_{n}$ be the partial orderpreserving transformation semigroup on $[n]$. Let

$$
C P O_{n}=\left\{\alpha \in P O_{n}:(\forall x, y \in \operatorname{dom} \alpha),|x \alpha-y \alpha| \leq|x-y|\right\}
$$

Then $C P O_{n}$ is a subsemigroup of $P O_{n}$. In this paper, we characterize Green's relations and the regularity of elements for $C P O_{n}$.

1. Introduction

Let S be a semigroup, $a, b \in S$. If a and b generate the same left principal ideal, that is, $S^{1} a=S^{1} b$, then we say that a and b are \mathcal{L} equivalent and write $a \mathcal{L} b$ or $(a, b) \in \mathcal{L}$. If a and b generate the same right principal ideal, that is, $a S^{1}=b S^{1}$, then we say that a and b are \mathcal{R} equivalent and write $a \mathcal{R} b$ or $(a, b) \in \mathcal{R}$. If a and b generate the same principal ideal, that is, $S^{1} a S^{1}=S^{1} b S^{1}$, then we say that a and b are \mathcal{J} equivalent and write $a \mathcal{J} b$ or $(a, b) \in \mathcal{J}$. Let $\mathcal{H}=\mathcal{L} \cap \mathcal{R}, \mathcal{D}=\mathcal{L} \circ \mathcal{R}$, then \mathcal{H}, \mathcal{D} are equivalences on S, too. It is well known that in a finite semigroup $\mathcal{J}=\mathcal{D}$. These five equivalences are usually called Green's equivalences on S. They were introduced by J. A. Green in [2], and have a great importance in the study of the algebraic structure of semigroups.

Let $[n]=\{1,2, \ldots, n\}$ ordered in the standard way. We denote by $P T_{n}$ the semigroup of all partial transformations on $[n]$. We say $\alpha \in P T_{n}$ is orderpreserving if, for all $x, y \in \operatorname{dom} \alpha, x \leq y$ implies $x \alpha \leq y \alpha$, and α is compressingpreserving if, for all $x, y \in \operatorname{dom} \alpha,|x \alpha-y \alpha| \leq|x-y|$. We denote by $P O_{n}$ the subsemigroup of $P T_{n}$ of all partial order-preserving transformations (excluding the identity mapping). Let

$$
C P O_{n}=\left\{\alpha \in P O_{n}:(\forall x, y \in \operatorname{dom} \alpha),|x \alpha-y \alpha| \leq|x-y|\right\}
$$

Received May 31, 2011; Revised January 25, 2012.
2010 Mathematics Subject Classification. 20M20.
Key words and phrases. order-preserving transformations, compression-preserving transformations, Green's relations.

This work is supported by Natural Science Fund of Guizhou(No. [2010] 3174).
be the set of $P O_{n}$ consisting of all partial order-preserving and compressingpreserving mappings on $[n]$. It is easily verified that $C P O_{n}$ is a subsemigroup of $P O_{n}$.

The Green's relations on various special subsemigroups of $P T_{n}$ have been studied by many authors; see for example, [1], [3], [4], [5], [6], [7], [8], [9], [10], [11]. The purpose of this paper is to investigate regularity of elements and Green's relations for the new subsemigroup $C P O_{n}$ of $P T_{n}$. Accordingly, in Section 2, the condition under which an element $\alpha \in C P O_{n}$ is regular is analyzed, and a necessary and sufficient condition is established. In Section 3, Green's equivalences on $C P O_{n}$ are considered and the relations \mathcal{L}, \mathcal{R} and \mathcal{D} are described for arbitrary elements.

2. Regular elements in CPO_{n}

In this section we investigate the condition under which an elements of $C P O_{n}$ is regular and describe some properties of regular elements. We first need the following terminology and notation.

Let $x, y \in[n], x<y$. The set $[x, y]=\{z \in[n]: x \leq z \leq y\}$ of $[n]$ is called a closed interval. Similarly, we can define the intervals of other kinds, such as $(x, y],(x, y)$ and $[x, y)$. Let P, Q be two subsets of $[n]$. If $a<b$ holds for arbitrary $a \in P$ and $b \in Q$, then we say that P is less than Q, and write $P<Q$. For any $\alpha \in P O_{n}$, it is obvious that $x \alpha^{-1}<y \alpha^{-1}$ if $x<y(x, y \in i m \alpha)$. Then every $\alpha \in C P O_{n}$ can be expressed as

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{s} \tag{2.1}\\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right)
$$

where $a_{1}<a_{2}<\cdots<a_{s}, A_{1}<A_{2}<\cdots<A_{s}, a_{i}-a_{i-1} \leq \min A_{i}-$ $\max A_{i-1}, i=2, \ldots, s$ (if $s \geq 2$).

Definition 2.1. For any two elements of $C P O_{n}$ with the same rank:

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right), \quad \beta=\left(\begin{array}{llll}
B_{1} & B_{2} & \cdots & B_{s} \\
b_{1} & b_{2} & \cdots & b_{s}
\end{array}\right)
$$

where $a_{1}<a_{2}<\cdots<a_{s}, A_{1}<A_{2}<\cdots<A_{s}, a_{i}-a_{i-1} \leq \min A_{i}-\max A_{i-1}$, $b_{1}<b_{2}<\cdots<b_{s}, B_{1}<B_{2}<\cdots<B_{s}, b_{i}-b_{i-1} \leq \min B_{i}-\max B_{i-1}, i=$ $2, \ldots, s, s \geq 2$. Let $d=\max A_{1}-\max B_{1}$. If $\min A_{s}-\min B_{s}=d$ and $A_{i}=B_{i}+d$ or $B_{i}=A_{i}-d, i \in[2, s-1]$ (if $s \geq 3$), then α, β are called same kernel-type, denoted $\alpha \underline{\text { Ker }} \beta$. If $\left|a_{i}-a_{j}\right|=\left|b_{i}-b_{j}\right|$ for all $i, j \in[1, s]$, then α, β are called same image-type, denoted $\alpha \underline{I m} \beta$.

Now we investigate the condition under which an element in $C P O_{n}$ is regular.

Theorem 2.2. Let $\alpha \in C P O_{n}$ be as defined in (2.1) and let $d=\max A_{1}-a_{1}$.
(1) If $|i m \alpha|=1$, then α is regular.
(2) If \mid im $\alpha \mid=2$, then α is regular if and only if $\max A_{1}-a_{1}=\min A_{2}-a_{2}$.
(3) If \mid im $\alpha \mid \geq 3$, then α is regular if and only if $\min A_{s}-a_{s}=d$ and $A_{i}=\left\{a_{i}+d\right\}, i \in[2, s-1]$.
Proof. (1) Note that $\alpha=\binom{A_{1}}{a_{1}}$. Let $x \in A_{1}$. Define β by

$$
\beta=\binom{a_{1}}{x}
$$

Then $\beta \in C P O_{n}$ and $\alpha=\alpha \beta \alpha$.
(2) Note that $\alpha=\left(\begin{array}{ll}A_{1} & A_{2} \\ a_{1} & a_{2}\end{array}\right)$. Suppose that α is regular. Then there exists $\beta \in C P O_{n}$ such that $\alpha=\alpha \beta \alpha$. Thus $a_{i}=A_{i} \alpha=\left(A_{i} \alpha\right) \beta \alpha=\left(a_{i} \beta\right) \alpha(i=1,2)$ and so $a_{i} \beta \in A_{i}(i=1,2)$. Note that $a_{1}<a_{2}, A_{1}<A_{2}$ and $\alpha, \beta \in C P O_{n}$. It follows that

$$
\begin{aligned}
a_{2}-a_{1} & =\left|a_{2}-a_{1}\right|=\left|A_{2} \alpha-A_{1} \alpha\right| \\
& =\left|\left(\min A_{2}\right) \alpha-\left(\max A_{1}\right) \alpha\right| \\
& \leq\left|\min A_{2}-\max A_{1}\right|=\min A_{2}-\max A_{1} \\
& \leq a_{2} \beta-a_{1} \beta=\left|a_{2} \beta-a_{1} \beta\right| \\
& \leq\left|a_{2}-a_{1}\right|=a_{2}-a_{1} .
\end{aligned}
$$

Thus $a_{2}-a_{1}=\min A_{2}-\max A_{1}$ and so $\max A_{1}-a_{1}=\min A_{2}-a_{2}$.
Conversely, suppose that $\max A_{1}-a_{1}=\min A_{2}-a_{2}$. Define β by

$$
\beta=\left(\begin{array}{cc}
a_{1} & a_{2} \\
\max A_{1} & \min A_{2}
\end{array}\right) .
$$

Then $\beta \in C P O_{n}$ and $\alpha=\alpha \beta \alpha$.
(3) Suppose that α is regular. Then there exists $\beta \in C P O_{n}$ such that $\alpha=\alpha \beta \alpha$. Thus, for any $i, j \in[1, s]$,

$$
a_{i}=A_{i} \alpha=\left(A_{i} \alpha\right) \beta \alpha=\left(a_{i} \beta\right) \alpha, \quad a_{j}=A_{j} \alpha=\left(A_{j} \alpha\right) \beta \alpha=\left(a_{j} \beta\right) \alpha
$$

and so

$$
\begin{equation*}
a_{i} \beta \in A_{i}, \quad a_{j} \beta \in A_{j} . \tag{2.2}
\end{equation*}
$$

Take any $i, j \in[1, s]$ with $i<j$. Note that $a_{i}<a_{j}, A_{i}<A_{j}$ and (2.2). Since $\alpha, \beta \in C P O_{n}$, we have

$$
\begin{aligned}
a_{j}-a_{i} & =\left|a_{j}-a_{i}\right|=\left|A_{j} \alpha-A_{i} \alpha\right| \\
& =\left|\left(\min A_{j}\right) \alpha-\left(\max A_{i}\right) \alpha\right| \\
& \leq\left|\min A_{j}-\max A_{i}\right|=\min A_{j}-\max A_{i} \\
& \leq a_{j} \beta-a_{i} \beta=\left|a_{j} \beta-a_{i} \beta\right| \\
& \leq\left|a_{j}-a_{i}\right|=a_{j}-a_{i} .
\end{aligned}
$$

Thus

$$
a_{j}-a_{i}=\min A_{j}-\max A_{i}, i<j, i, j \in[1, s],
$$

and so

$$
\begin{equation*}
\min A_{j}-a_{j}=\max A_{i}-a_{i}, i<j, i, j \in[1, s] . \tag{2.3}
\end{equation*}
$$

Clearly, $\min A_{s}-a_{s}=\max A_{1}-a_{1}=d$. By (2.3), we have

$$
\min A_{s}-a_{s}=\max A_{i}-a_{i}, \min A_{i}-a_{i}=\max A_{1}-a_{1}, i \in[2, s-1]
$$

Thus $\max A_{i}-a_{i}=\min A_{i}-a_{i}(=d)$ and so $\max A_{i}=\min A_{i}=a_{i}+d$. It follows that $A_{i}=\left\{a_{i}+d\right\}$.

Conversely, suppose that $\min A_{s}-a_{s}=d$ and $A_{i}=\left\{a_{i}+d\right\}, i \in[2, s-1]$.
Define β by

$$
\beta=\left(\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{s-1} & a_{s} \\
\max A_{1} & a_{2}+d & \cdots & a_{s-1}+d & \min A_{s}
\end{array}\right) .
$$

Then $\beta \in C P O_{n}$ and $\alpha=\alpha \beta \alpha$.
Remark 2.3. If $n \geq 5$, then the semigroup $C P O_{n}$ is not regular. In fact, let

$$
\alpha=\left(\begin{array}{ccc}
1 & \{2,3\} & 5 \\
1 & 2 & 4
\end{array}\right) \in C P O_{n} .
$$

Then, by Theorem 2.2(3), α is not regular in $C P O_{n}$.
Next we observe two properties for regular elements in the semigroup $C P O_{n}$.
Theorem 2.4. Let $\alpha, \beta \in C P O_{n}$ be regular elements with im $\alpha=\operatorname{im} \beta(|i m \alpha| \geq$ 2). Then $\alpha \underline{\text { Ker }} \beta$.

Proof. Let

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right), \quad \beta=\left(\begin{array}{cccc}
B_{1} & B_{2} & \cdots & B_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right)
$$

where $a_{1}<a_{2}<\cdots<a_{s}, A_{1}<A_{2}<\cdots<A_{s}, B_{1}<B_{2}<\cdots<B_{s}$. Let $d_{1}=\max A_{1}-a_{1}, d_{2}=\max B_{1}-a_{1}$ and $d=\max A_{1}-\max B_{1}$. Then $d=d_{1}-d_{2}$. Since α, β are regular, by Theorem 2.2 , we have

$$
\begin{gathered}
\min A_{s}-a_{s}=\max A_{1}-a_{1}=d_{1}, \min B_{s}-a_{s}=\max B_{1}-a_{1}=d_{2}, \\
A_{i}=\left\{a_{i}+d_{1}\right\}, B_{i}=\left\{a_{i}+d_{2}\right\}, i \in[2, s-1](\text { if } s \geq 3) .
\end{gathered}
$$

It follows that

$$
\begin{gathered}
\min A_{s}-\min B_{s}=\max A_{1}-\max B_{1}=d \\
A_{i}=\left\{a_{i}+d_{2}+d\right\}=B_{i}+d, i \in[2, s-1](\text { if } s \geq 3)
\end{gathered}
$$

Thus $\alpha \underline{\text { Ker }} \beta$.
Theorem 2.5. Let $\alpha, \beta \in C P O_{n}$ be regular elements with $\operatorname{Ker} \alpha=\operatorname{Ker} \beta$ $(\mid$ Ker $\alpha \mid \geq 2)$. Then $\alpha \underline{\underline{I m}} \beta$.

Proof. Let

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right), \quad \beta=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{s} \\
b_{1} & b_{2} & \cdots & b_{s}
\end{array}\right),
$$

where $a_{1}<a_{2}<\cdots<a_{s}, b_{1}<b_{2}<\cdots<b_{s}, A_{1}<A_{2}<\cdots<A_{s}$. Let $d_{1}=\max A_{1}-a_{1}$ and $d_{2}=\max A_{1}-b_{1}$. Since α, β are regular, by Theorem 2.2, we have

$$
\begin{gathered}
\min A_{s}-a_{s}=\max A_{1}-a_{1}=d_{1}, \min A_{s}-b_{s}=\max A_{1}-b_{1}=d_{2} \\
A_{i}=\left\{a_{i}+d_{1}\right\}, A_{i}=\left\{b_{i}+d_{2}\right\}, i \in[2, s-1](\text { if } s \geq 3)
\end{gathered}
$$

Then

$$
\begin{gathered}
a_{s}-b_{s}=a_{1}-b_{1}=d_{2}-d_{1} \\
a_{i}-b_{i}=d_{2}-d_{1}, i \in[2, s-1](\text { if } s \geq 3)
\end{gathered}
$$

and so

$$
a_{i}-b_{i}=d_{2}-d_{1}, i \in[1, s] .
$$

It follows that for all $i, j \in[1, s]$,

$$
\left|a_{i}-a_{j}\right|=\left|\left(b_{i}+d_{2}-d_{1}\right)-\left(b_{j}+d_{2}-d_{1}\right)\right|=\left|b_{i}-b_{j}\right| .
$$

Thus $\alpha \underline{\underline{I m}} \beta$.

3. Green's relations on $C P O_{n}$

In this section, we describe Green's relations on $C P O_{n}$. Since it is well known that $\mathcal{D}=\mathcal{J}$ in every finite semigroup and $\mathcal{H}=\mathcal{L} \wedge \mathcal{R}$, we only consider the Green relations \mathcal{L}, \mathcal{R} and \mathcal{D}. We begin with the relation \mathcal{L}.

Theorem 3.1. Let $\alpha, \beta \in C P O_{n}$.
(1) If $|i m \alpha|=1$, then $(\alpha, \beta) \in \mathcal{L}$ if and only if im $\alpha=i m \beta$.
(2) If \mid im $\alpha \mid \geq 2$, then $(\alpha, \beta) \in \mathcal{L}$ if and only if im $\alpha=$ im β and $\alpha \underline{\text { Ker }} \beta$.

Proof. (1) Suppose that $(\alpha, \beta) \in \mathcal{L}$. Then there exist $\delta, \gamma \in\left(C P O_{n}\right)^{1}$ such that $\alpha=\delta \beta, \beta=\gamma \alpha$. It follows easily that $i m \alpha=i m \beta$. Conversely, suppose that $i m \alpha=i m \beta$. Let

$$
\alpha=\binom{A}{a}, \quad \beta=\binom{B}{a} .
$$

Let $c \in B$ and $d \in A$. Define δ, γ by

$$
\delta=\binom{A}{c}, \gamma=\binom{B}{d} .
$$

Clearly, $\delta, \gamma \in C P O_{n}$ and $\alpha=\delta \beta, \beta=\gamma \alpha$. Thus $(\alpha, \beta) \in \mathcal{L}$.
(2) Suppose that $(\alpha, \beta) \in \mathcal{L}$. Then there exist $\delta, \gamma \in\left(C P O_{n}\right)^{1}$ such that $\alpha=\delta \beta, \beta=\gamma \alpha$. It follows easily that $i m \alpha=i m \beta$. Let

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right), \quad \beta=\left(\begin{array}{cccc}
B_{1} & B_{2} & \cdots & B_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right),
$$

where $a_{1}<a_{2}<\cdots<a_{s}, A_{1}<A_{2}<\cdots<A_{s}, B_{1}<B_{2}<\cdots<B_{s}$. Let $d=\max A_{1}-\max B_{1}$. Note that

$$
A_{i} \delta \beta=A_{i} \alpha=a_{i}=B_{i} \beta, B_{i} \gamma \alpha=B_{i} \beta=a_{i}=A_{i} \alpha, i \in[1, s] .
$$

We obtain that

$$
\begin{equation*}
A_{i} \delta \subseteq B_{i}, \quad B_{i} \gamma \subseteq A_{i}, i \in[1, s] \tag{3.1}
\end{equation*}
$$

Take any $i, j \in[1, s]$ with $i<j$. From (3.1) we know that (3.2) $\quad\left(\min A_{j}\right) \delta \in B_{j},\left(\max A_{i}\right) \delta \in B_{i},\left(\min B_{j}\right) \gamma \in A_{j},\left(\max B_{i}\right) \gamma \in A_{i}$.

Note that

$$
\begin{equation*}
A_{i}<A_{j}, B_{i}<B_{j} \tag{3.3}
\end{equation*}
$$

Since $\delta, \gamma \in\left(C P O_{n}\right)^{1}$, we have

$$
\begin{aligned}
\min B_{j}-\max B_{i} & \leq\left(\min A_{j}\right) \delta-\left(\max A_{i}\right) \delta=\left|\left(\min A_{j}\right) \delta-\left(\max A_{i}\right) \delta\right| \\
& \leq\left|\min A_{j}-\max A_{i}\right|=\min A_{j}-\max A_{i} \\
\min A_{j}-\max A_{i} & \leq\left(\min B_{j}\right) \gamma-\left(\max B_{i}\right) \gamma=\left|\left(\min B_{j}\right) \gamma-\left(\max B_{i}\right) \gamma\right| \\
& \leq\left|\min B_{j}-\max B_{i}\right|=\min B_{j}-\max B_{i}
\end{aligned}
$$

It follows from (3.2) that

$$
\begin{align*}
& \min A_{j}-\min B_{j}=\max A_{i}-\max B_{i} \tag{3.4}\\
& \left(\min A_{j}\right) \delta=\min B_{j},\left(\max A_{i}\right) \delta=\max B_{i} \tag{3.5}\\
& \left(\min B_{j}\right) \gamma=\min A_{j},\left(\max B_{i}\right) \gamma=\max A_{i} \tag{3.6}
\end{align*}
$$

If \mid ima $\mid=2$, then, by (3.4), $\min A_{2}-\min B_{2}=\max A_{1}-\max B_{1}=d$. Thus $\alpha \frac{\text { Ker }}{} \beta$. If $|i m \alpha| \geq 3$. We claim that

$$
\begin{align*}
& x \delta=x-d, \forall x \in A_{i}, \quad i \in[2, s-1] \tag{3.7}\\
& x \gamma=x+d, \forall x \in B_{i}, \quad i \in[2, s-1] . \tag{3.8}
\end{align*}
$$

Note that (3.1) and (3.3). Since $\delta \in\left(C P O_{n}\right)^{1}$, we have

$$
\begin{aligned}
& x \delta-\left(\max A_{1}\right) \delta=\left|x \delta-\left(\max A_{1}\right) \delta\right| \leq\left|x-\max A_{1}\right|=x-\max A_{1} \\
& \left(\min A_{s}\right) \delta-x \delta=\left|\left(\min A_{s}\right) \delta-x \delta\right| \leq\left|\min A_{s}-x\right|=\min A_{s}-x
\end{aligned}
$$

Thus

$$
\max A_{1}-\left(\max A_{1}\right) \delta \leq x-x \delta \leq \min A_{s}-\left(\min A_{s}\right) \delta
$$

It follows from (3.4) and (3.5) that

$$
\begin{aligned}
d & =\max A_{1}-\max B_{1}=\max A_{1}-\left(\max A_{1}\right) \delta \leq x-x \delta \leq \min A_{s}-\left(\min A_{s}\right) \delta \\
& =\min A_{s}-\min B_{s}=\max A_{1}-\max B_{1}=d .
\end{aligned}
$$

Thus $x \delta=x-d$. Similarly, we can prove that (3.8) holds. Now, we shall prove that $\alpha \underline{\text { Ker }} \beta$. By (3.4), we have

$$
\min A_{s}-\min B_{s}=\max A_{1}-\max B_{1}=d
$$

From (3.7) and (3.8) we know that $\left.\delta\right|_{A_{i}}$ and $\left.\gamma\right|_{B_{i}}$ are mutually inverse bijections from A_{i} onto $A_{i} \delta$ and B_{i} onto $B_{i} \gamma$, respectively. Then, by (3.1),

$$
\left|A_{i}\right|=\left|A_{i} \delta\right| \leq\left|B_{i}\right|,\left|B_{i}\right|=\left|B_{i} \gamma\right| \leq\left|A_{i}\right|, i \in[2, s-1]
$$

and so $\left|A_{i}\right|=\left|A_{i} \delta\right|=\left|B_{i} \gamma\right|=\left|B_{i}\right|$. Thus $A_{i} \delta=B_{i}$ and $B_{i} \gamma=A_{i}$ by (3.1). Moreover, by (3.7) and (3.8), we have

$$
\begin{aligned}
& A_{i}=B_{i}+d, \quad i \in[2, s-1], \\
& B_{i}=A_{i}-d, i \in[2, s-1] .
\end{aligned}
$$

Thus $A \underline{\text { Ker }} B$.
Conversely, suppose that $\operatorname{im} \alpha=\operatorname{im} \beta$ and $\alpha \underline{\text { Ker }} \beta$. Let

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right), \quad \beta=\left(\begin{array}{cccc}
B_{1} & B_{2} & \cdots & B_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right),
$$

where $a_{1}<a_{2}<\cdots<a_{s}, A_{1}<A_{2}<\cdots<A_{s}, B_{1}<B_{2}<\cdots<B_{s}$. Let $d=\max A_{1}-\max B_{1}$. If $|i m \alpha|=2(s=2)$. Define δ, γ by

$$
\delta=\left(\begin{array}{cc}
A_{1} & A_{2} \\
\max B_{1} & \min B_{2}
\end{array}\right), \quad \gamma=\left(\begin{array}{cc}
B_{1} & B_{2} \\
\max A_{1} & \min A_{2}
\end{array}\right) .
$$

Clearly, $\delta, \gamma \in P O_{n}, \alpha=\delta \beta$ and $\beta=\gamma \alpha$. Since $\alpha \underline{\text { Ker }} \beta$, we have $\max A_{1}-$ $\max B_{1}=\min A_{2}-\min B_{2}(=d)$ and so $\min A_{2}-\max A_{1}=\min B_{2}-\max B_{1}$. It easily follows that $\delta, \gamma \in C P O_{n}$. Thus $(\alpha, \beta) \in \mathcal{L}$. If $|i m \alpha| \geq 3(s \geq 3)$, then since $\alpha \underline{\text { Ker }} \beta$, we have

$$
\begin{equation*}
\min A_{s}-\min B_{s}=d, \quad A_{i}=B_{i}+d \tag{3.9}
\end{equation*}
$$

Define δ, γ by

$$
\begin{aligned}
& x \delta=\left\{\begin{array}{l}
\max B_{1}, \text { if } x \in A_{1}, \\
x-d, \text { if } x \in A_{i}, i \in[2, s-1], \\
\min B_{s}, \text { if } x \in A_{s},
\end{array}\right. \\
& x \gamma=\left\{\begin{array}{l}
\max A_{1}, \text { if } x \in B_{1}, \\
x+d, \text { if } x \in B_{i}, i \in[2, s-1], \\
\min A_{s}, \text { if } x \in B_{s} .
\end{array}\right.
\end{aligned}
$$

Clearly, $\delta, \gamma \in P O_{n}, \alpha=\delta \beta$ and $\beta=\gamma \alpha$. Take any $x, y \in \operatorname{dom} \delta$ with $x \leq y$. Note that $\operatorname{dom} \delta=A_{1} \cup A_{2} \cup \cdots \cup A_{s}$. We distinguish five cases.

Case 1: $x, y \in A_{i}, i \in\{1, s\}$. Clearly, $x \delta-y \delta=0$. Thus $|x \delta-y \delta| \leq|x-y|$.
Case 2: $x \in A_{1}, y \in A_{i}, i \in[2, s-1]$. Since $A_{1}<A_{i}$, we have $|x \delta-y \delta|=\left|\max B_{1}-(y-d)\right|=\left|y-\left(d+\max B_{1}\right)\right|=\left|y-\max A_{1}\right| \leq|x-y|$.

Case 3: $x \in A_{1}, y \in A_{s}$. Note that $A_{1}<A_{s}$. By (3.9), we have

$$
\begin{aligned}
|x \delta-y \delta| & =\left|\max B_{1}-\min B_{s}\right| \\
& =\left|\left(\max A_{1}-d\right)-\left(\min A_{s}-d\right)\right| \\
& =\left|\max A_{1}-\min A_{s}\right| \leq|x-y| .
\end{aligned}
$$

Case 4: $x \in A_{i}, y \in A_{j}, i, j \in[2, s-1], i \neq j$. Clearly, $|x \delta-y \delta|=$ $|(x-d)-(y-d)|=|x-y|$. Thus $|x \delta-y \delta| \leq|x-y|$.

Case 5: $x \in A_{i}, i \in[2, s-1], y \in A_{s}$. Note that $A_{i}<A_{s}$. By (3.9), we have $|x \delta-y \delta|=\left|(x-d)-\min B_{s}\right|=\left|\left(\min B_{s}+d\right)-x\right|=\left|\min A_{s}-x\right| \leq|x-y|$.

Form the discussion above, we have $\delta \in C P O_{n}$. Similarly, we can prove that $\gamma \in C P O_{n}$. Thus $(\alpha, \beta) \in \mathcal{L}$.
Theorem 3.2. Let $\alpha, \beta \in C P O_{n}$.
(1) If $|\operatorname{im\alpha }|=1$, then $(\alpha, \beta) \in \mathcal{R}$ if and only if $\operatorname{Ker} \alpha=\operatorname{Ker} \beta$.
(2) If $|i m \alpha| \geq 2$, then $(\alpha, \beta) \in \mathcal{R}$ if and only if $\operatorname{Ker} \alpha=\operatorname{Ker} \beta$ and $\alpha \underline{I m} \beta$.

Proof. (1) Suppose that $(\alpha, \beta) \in \mathcal{R}$. Then there exist $\delta, \gamma \in\left(C P O_{n}\right)^{1}$ such that $\alpha=\beta \delta, \beta=\alpha \gamma$. For each $(x, y) \in \operatorname{Ker} \alpha$, we have

$$
x \beta=x(\alpha \gamma)=(x \alpha) \gamma=(y \alpha) \gamma=y(\alpha \gamma)=y \beta
$$

Then $\operatorname{Ker} \alpha \subseteq \operatorname{Ker} \beta$. Similarly, we can prove that $\operatorname{Ker} \beta \subseteq \operatorname{Ker} \alpha$. Thus $\operatorname{Ker} \alpha=\operatorname{Ker} \beta$. Conversely, suppose that $\operatorname{Ker} \alpha=\operatorname{Ker} \beta$. Let

$$
\alpha=\binom{A}{a}, \quad \beta=\binom{A}{b}
$$

Define δ, γ by

$$
\delta=\binom{b}{a}, \gamma=\binom{a}{b}
$$

Clearly, $\delta, \gamma \in C P O_{n}$ and $\alpha=\beta \delta, \beta=\alpha \gamma$. Thus $(\alpha, \beta) \in \mathcal{R}$.
(2) Suppose that $(\alpha, \beta) \in \mathcal{R}$. Then there exist $\delta, \gamma \in\left(C P O_{n}\right)^{1}$ such that $\alpha=\beta \delta, \beta=\alpha \gamma$. Thus by the same proof as given for (1), we have $\operatorname{Ker} \alpha=$ Ker β. Let

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right), \quad \beta=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{s} \\
b_{1} & b_{2} & \cdots & b_{s}
\end{array}\right),
$$

where $a_{1}<a_{2}<\cdots<a_{s}, b_{1}<b_{2}<\cdots<b_{s}, A_{1}<A_{2}<\cdots<A_{s}$. Note that for any $i, j \in[1, s]$,

$$
\begin{aligned}
a_{i} & =A_{i} \alpha=A_{i}(\beta \delta)=\left(A_{i} \beta\right) \delta=b_{i} \delta, \quad a_{j}=A_{j} \alpha=A_{j}(\beta \delta)=\left(A_{j} \beta\right) \delta=b_{j} \delta \\
b_{i} & =A_{i} \beta=A_{i}(\alpha \gamma)=\left(A_{i} \alpha\right) \gamma=a_{i} \gamma, \quad b_{j}=A_{j} \beta=A_{j}(\alpha \gamma)=\left(A_{j} \alpha\right) \gamma=a_{j} \gamma
\end{aligned}
$$

Since $\delta, \gamma \in C P O_{n}$, we have

$$
\begin{aligned}
& \left|a_{i}-a_{j}\right|=\left|b_{i} \delta-b_{j} \delta\right| \leq\left|b_{i}-b_{j}\right| \\
& \left|b_{i}-b_{j}\right|=\left|a_{i} \gamma-a_{j} \gamma\right| \leq\left|a_{i}-a_{j}\right| .
\end{aligned}
$$

Thus $\left|a_{i}-a_{j}\right|=\left|b_{i}-b_{j}\right|$ and so $\alpha \underline{\underline{I m}} \beta$.
Conversely, suppose that $\operatorname{Ker} \alpha=\operatorname{Ker} \beta$ and $\alpha \underline{I m} \beta$. Let

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right), \quad \beta=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{s} \\
b_{1} & b_{2} & \cdots & b_{s}
\end{array}\right),
$$

where $a_{1}<a_{2}<\cdots<a_{s}, b_{1}<b_{2}<\cdots<b_{s}, A_{1}<A_{2}<\cdots<A_{s}$. Define δ, γ by

$$
\begin{aligned}
& b_{i} \delta=a_{i}, i \in[1, s], \\
& a_{i} \gamma=b_{i}, i \in[1, s] .
\end{aligned}
$$

Clearly, $\delta, \gamma \in P O_{n}, \alpha=\beta \delta$ and $\beta=\alpha \gamma$. Since $\alpha \underline{I m} \beta$, we have $\left|a_{i}-a_{j}\right|=$ $\left|b_{i}-b_{j}\right|$. Thus $\delta, \gamma \in C P O_{n}$ and so $(\alpha, \beta) \in \mathcal{R}$.

Theorem 3.3. Let $\alpha, \beta \in C P O_{n}$.
(1) If $|i m \alpha|=1$, then $(\alpha, \beta) \in \mathcal{D}$ if and only if $|i m \alpha|=|i m \beta|$.
(2) If \mid im $\alpha \mid \geq 2$, then $(\alpha, \beta) \in \mathcal{D}$ if and only if $|i m \alpha|=|i m \beta|, \alpha \underline{\text { Ker }} \beta$ and $\alpha \underline{I m} \beta$.

Proof. (1) Suppose that $(\alpha, \beta) \in \mathcal{D}$. Then there exists $\gamma \in\left(C P O_{n}\right)^{1}$ such that $\alpha \mathcal{L} \gamma \mathcal{R} \beta$. By Theorems 3.1 and 3.2, we have $i m \alpha=i m \gamma$ and $\operatorname{Ker} \gamma=\operatorname{Ker} \beta$. It follows easily that $|i m \alpha|=|i m \beta|$. Conversely, suppose that $|i m \alpha|=|i m \beta|$. Let

$$
\alpha=\binom{A}{a}, \quad \beta=\binom{B}{b} .
$$

Define γ by

$$
\gamma=\binom{B}{a}
$$

Clearly, $\gamma \in C P O_{n}$ and $i m \alpha=i m \gamma, \operatorname{Ker} \gamma=\operatorname{Ker} \beta$. Then, by Theorems 3.1 and $3.2, \alpha \mathcal{L} \gamma$ and $\gamma \mathcal{R} \beta$. Thus $(\alpha, \beta) \in \mathcal{D}$.
(2) Suppose that $(\alpha, \beta) \in \mathcal{D}$. Then there exists $\gamma \in\left(C P O_{n}\right)^{1}$ such that $\alpha \mathcal{L} \gamma \mathcal{R} \beta$. By Theorems 3.1 and 3.2, we have $i m \alpha=i m \gamma, \alpha \underline{K e r} \gamma$ and $\operatorname{Ker} \gamma=$ $\operatorname{Ker} \beta, \gamma \underline{\underline{I m}} \beta$. It follows easily that $|i m \alpha|=|i m \beta|$ and $\alpha \underline{\underline{K e r}} \beta, \alpha \underline{I m} \beta$.

Conversely, suppose that $|i m \alpha|=|i m \beta|, \alpha \underline{\text { Ker }} \beta$ and $\alpha \underline{I m} \beta$. Let

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right), \quad \beta=\left(\begin{array}{cccc}
B_{1} & B_{2} & \cdots & B_{s} \\
b_{1} & b_{2} & \cdots & b_{s}
\end{array}\right),
$$

where $a_{1}<a_{2} \cdots<a_{s}, A_{1}<A_{2}<\cdots<A_{s}, b_{1}<b_{2} \cdots<b_{s}, B_{1}<B_{2}<\cdots<$ B_{s}. Define γ by

$$
\gamma=\left(\begin{array}{cccc}
B_{1} & B_{2} & \cdots & B_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right)
$$

Clearly, $i m \alpha=\operatorname{im} \gamma$ and $\operatorname{Ker} \gamma=\operatorname{Ker} \beta$. Since $\alpha \underline{\text { Ker }} \beta$ and $\alpha \underline{I m} \beta$, we have that $\alpha \frac{\text { Ker }}{} \gamma$ and $\gamma \underline{I m} \beta$. Then, by Theorems 3.1 and $3.2, \alpha \mathcal{L} \gamma$ and $\gamma \mathcal{R} \beta$. Thus $(\alpha, \beta) \in \mathcal{D}$.

As a consequence of Theorems 2.3, 2.4, 3.1 and 3.2, the following result follows readily.

Corollary 3.4. Let $\alpha, \beta \in C P O_{n}$ be regular elements. Then the following statements hold:
(1) $(\alpha, \beta) \in \mathcal{L}$ if and only if im $\alpha=i m \beta$.
(2) $(\alpha, \beta) \in \mathcal{R}$ if and only if $\operatorname{Ker} \alpha=\operatorname{Ker} \beta$.

For the condition under which two regular elements in $C P O_{n}$ are \mathcal{D} equivalent, we have:

Theorem 3.5. Let $\alpha, \beta \in C P O_{n}$ be regular elements.
(1) If $|i m \alpha|=1$, then $(\alpha, \beta) \in \mathcal{D}$ if and only if $|i m \alpha|=|i m \beta|$.
(2) If $|i m \alpha| \geq 2$, then $(\alpha, \beta) \in \mathcal{D}$ if and only if $|i m \alpha|=|i m \beta|$ and $\alpha \underline{\text { Im }} \beta$.

Proof. (1) It is an immediate consequence of Theorem 3.3.
(2) Suppose that $(\alpha, \beta) \in \mathcal{D}$. Then, by Theorem 3.3, \mid im $\alpha|=|i m \beta|$ and $\alpha \underline{I m} \beta$.

Conversely, suppose that $|i m \alpha|=|i m \beta|$ and $\alpha \underline{I m} \beta$. Let

$$
\alpha=\left(\begin{array}{llll}
A_{1} & A_{2} & \cdots & A_{s} \\
a_{1} & a_{2} & \cdots & a_{s}
\end{array}\right), \quad \beta=\left(\begin{array}{llll}
B_{1} & B_{2} & \cdots & B_{s} \\
b_{1} & b_{2} & \cdots & b_{s}
\end{array}\right),
$$

where $a_{1}<a_{2} \cdots<a_{s}, A_{1}<A_{2}<\cdots<A_{s}, b_{1}<b_{2} \cdots<b_{s}, B_{1}<B_{2}<\cdots<$ B_{s}. Since $\alpha \underline{I m} \beta$, we have

$$
\begin{equation*}
\left|a_{i}-a_{j}\right|=\left|b_{i}-b_{j}\right|, i, j \in[1, s] . \tag{3.10}
\end{equation*}
$$

Note that $a_{i} \geq a_{j}, b_{i} \geq b_{j}$ if $i \geq j ; a_{i} \leq a_{j}, b_{i} \leq b_{j}$ if $i \leq j$. It follows easily from (3.10) that

$$
\begin{equation*}
a_{i}-b_{i}=a_{j}-b_{j}, i, j \in[1, s] . \tag{3.11}
\end{equation*}
$$

Let $d_{1}=\max A_{1}-a_{1}, d_{2}=\max B_{1}-b_{1}$ and $d=\max A_{1}-\max B_{1}$. Then

$$
a_{1}-b_{1}=\left(\max A_{1}-\max B_{1}\right)+d_{2}-d_{1}=d+d_{2}-d_{1} .
$$

By (3.11), we have

$$
\begin{equation*}
a_{i}-b_{i}=a_{1}-b_{1}=d+d_{2}-d_{1}, i \in[1, s] . \tag{3.12}
\end{equation*}
$$

Since α, β are regular, by Theorem 3.1, we have

$$
\begin{gathered}
\min A_{s}-a_{s}=\max A_{1}-a_{1}=d_{1}, \min B_{s}-b_{s}=\max B_{1}-b_{1}=d_{2}, \\
A_{i}=\left\{a_{i}+d_{1}\right\}, B_{i}=\left\{b_{i}+d_{2}\right\}, i \in[2, s-1](\text { if } s \geq 3) .
\end{gathered}
$$

Then, by (3.12) that

$$
\begin{gathered}
\min A_{s}-\min B_{s}=\left(d_{1}+a_{s}\right)-\left(d_{2}+b_{s}\right)=\left(a_{s}-b_{s}\right)+\left(d_{1}-d_{2}\right)=d \\
A_{i}=\left\{a_{i}+d_{1}\right\}=\left\{\left(d+d_{2}-d_{1}+b_{i}\right)+d_{1}\right\}=\left\{\left(b_{i}+d_{2}\right)+d\right\}=B_{i}+d
\end{gathered}
$$

Thus $\alpha \frac{\text { Ker }}{} \beta$ and so, by Theorem 3.3, $(\alpha, \beta) \in \mathcal{D}$.
Acknowledgments. The authors wish to express their appreciation to the referees for some valuable comments and suggestions that helped to improve the presentation of this paper.

References

[1] P. M. Catarino and P. M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum 58 (1999), no. 2, 190-206.
[2] J. A. Green, On the structure of semigroups, Ann. of Math. (2) 54 (1951), 163-172.
[3] K. D. Jr. Magill and S. Subbiah, Green's relations for regular elements of semigroups of endomorphisms, Canad. J. Math. 26 (1974), 1484-1497.
[4] , Green's relations for regular elements of sandwich semigroups. I. General results, Proc. London Math. Soc. (3) 31 (1975), no. 2, 194-210.
[5] , Green's relations for regular elements of sandwich semigroups. II. Semigroups of continuous functions, J. Austral. Math. Soc. Ser. A 25 (1978), no. 1, 45-65.
[6] H. S. Pei, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Comm. Algebra 33 (2005), no. 1, 109-118.
[7] H. S. Pei, L. Sun, and H. C. Zhai, Green's relations for the variants of transformation semigroups preserving an equivalence relation, Comm. Algebra 35 (2007), no. 6, 19711986.
[8] H. S. Pei and D. Y. Zou, Green's equivalences on semigroups of transformations preserving order and an equivalence, Semigroup Forum 71 (2005), no. 2, 241-251.
[9] L. Sun and H. S. Pei, Green's relations on semigroups of transformations preserving two equivalence relations, J. Math. Res. Exposition 29 (2009), no. 3, 415-422.
[10] L. Sun, H. S. Pei, and Z. X. Cheng, Regularity and Green's relations for semigroups of transformations preserving orientation and an equivalence, Semigroup Forum 74 (2007), no. 3, 473-486.
[11] A. Umar, On the semigroups of order-decreasing finite full transformations, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 1-2, 129-142.

Ping Zhao
School of Mathematics and Computer Science
GuiZhou Normal University
Guiyang, GuiZhou Province 550001, P. R. China
And
Mathematics Teaching \& Research Section
Guiyang Medical College
Guiyang, GuiZhou Province 550004, P. R. China
E-mail address: zhaoping731108@hotmail.com, peaceguorong@yahoo.com
Mei Yang
Department of Petroleum Engineering
Texas A\&M University
College Station, Texas, 77840, USA
E-mail address: mei.yang@tamu.edu

