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CONVERGENCE OF MULTISPLITTING METHODS WITH

PREWEIGHTING FOR AN H-MATRIX

Yu Du Han and Jae Heon Yun

Abstract. In this paper, we study convergence of multisplitting methods
with preweighting for solving a linear system whose coefficient matrix is
an H-matrix corresponding to both the AORmultisplitting and the SSOR
multisplitting. Numerical results are also provided to confirm theoretical
results for the convergence of multisplitting methods with preweighting.

1. Introduction

In this paper, we consider multisplitting methods with preweighting for solv-
ing a linear system of the form

(1) Ax = b, x, b ∈ R
n,

where A ∈ R
n×n is a large sparse nonsingular matrix. Multisplitting method

was first introduced by O’Leary and White [6] for parallel computation of the
linear system (1).

For a vector x ∈ R
n, x ≥ 0 (x > 0) denotes that all components of x

are nonnegative (positive), and |x| denotes the vector whose components are
the absolute values of the corresponding components of x. For two vectors
x, y ∈ R

n, x ≥ y (x > y) means that x− y ≥ 0 (x− y > 0). These definitions
carry immediately over to matrices. For a square matrix A, diag(A) denotes
a diagonal matrix whose diagonal part coincides with the diagonal part of A.
Let ρ(A) denote the spectral radius of a square matrix A. Varga [8] showed
that for any two square matrices A and B, |A| ≤ B implies ρ(A) ≤ ρ(B).

A matrix A = (aij) ∈ R
n×n is called monotone if A is nonsingular with

A−1 ≥ 0. A matrix A = (aij) ∈ R
n×n is called an M -matrix if it is a monotone

matrix with aij ≤ 0 for i 6= j. The comparison matrix 〈A〉 = (αij) of a matrix
A = (aij) is defined by

αij =

{
|aij | if i = j,

−|aij | if i 6= j.
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A matrix A is called an H-matrix if 〈A〉 is an M -matrix.
A representation A = M−N is called a splitting of A if M is nonsingular. A

splitting A = M −N is called regular if M−1 ≥ 0 and N ≥ 0, and called weak

regular if M−1 ≥ 0 and M−1N ≥ 0 [1]. It is well known that if A = M −N is a
weak regular splitting of A, then ρ(M−1N) < 1 if and only if A−1 ≥ 0 [1, 8]. A
collection of triples (Mk, Nk, Ek), k = 1, 2, . . . , ℓ, is called a multisplitting of A
if A = Mk−Nk is a splitting of A for k = 1, 2, . . . , ℓ, and Ek’s, called weighting

matrices, are nonnegative diagonal matrices such that
∑ℓ

k=1
Ek = I.

The multisplitting method with postweighting which is usually called the mul-
tisplitting method has been extensively studied in the literature, see [2, 3, 4,
5, 6, 7, 9, 11, 12]. In 1989, White [10] proposed multisplitting method with
different weighting schemes, and he showed that multisplitting method with
preweighting yields the fastest method in certain situations. However, the
multisplitting method with preweighting has not been studied extensively, see
[4, 10]. This is the main motivation for studying convergence of multisplitting
method with preweighting. The purpose of this paper is to study conver-
gence of multisplitting methods with preweighting for solving a linear system
whose coefficient matrix is an H-matrix corresponding to both the AOR mul-
tisplitting and the SSOR multisplitting. We also provide numerical results to
confirm theoretical results for the convergence of multisplitting methods with
preweighting.

2. Convergence of multisplitting methods with preweighting

Let (Mk, Nk, Ek), k = 1, 2, . . . , ℓ, be a multisplitting of A. Then the corre-
sponding multisplitting method with preweighting for solving Ax = b [10] is
given by

xi+1 = H0xi +G0b

= xi +G0(b−Axi), i = 0, 1, 2, . . . ,
(2)

where

(3) G0 =

ℓ∑

k=1

Mk
−1Ek and H0 = I −G0A.

H0 = I −
∑ℓ

k=1
Mk

−1EkA is called an iteration matrix for the multisplitting

method with preweighting. Notice that H = I −
∑ℓ

k=1
EkMk

−1A is called
an iteration matrix for the multisplitting method. By simple calculation, one
obtains

H0
T = AT

(
I −

ℓ∑

k=1

Ek(Mk
T )−1AT

)
(AT )−1.

Let Ĥ = I−
∑ℓ

k=1
Ek(Mk

T )−1AT =
∑ℓ

k=1
Ek(Mk

T )−1Nk
T . Then Ĥ is similar

to H0
T and hence ρ(H0) = ρ(Ĥ). Notice that Ĥ is an iteration matrix for

the multisplitting method corresponding to a multisplitting (Mk
T , Nk

T , Ek),
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k = 1, 2, . . . , ℓ, of AT . Hence, convergence result of multisplitting method with

preweighting corresponding to a multisplitting of A can be obtained from that
of multisplitting method corresponding to a multisplitting of AT .

The multisplitting method with preweighting associated with a multisplit-
ting (Mk, Nk, Ek), k = 1, 2, . . . , ℓ, of A for solving the linear system (1) is as
follows:

Algorithm 1: Multisplitting method with preweighting

Given an initial vector x0

For i = 0, 1, . . . , until convergence
For k = 1 to ℓ {parallel execution}

Mkyk = Ek(b−Axi)

xi+1 = xi +
∑ℓ

k=1
yk

From now on, it is assumed that A = D−Lk − Vk, where D = diag(A) is a
nonsingular matrix, Lk is a strictly lower triangular matrix and Vk is a general
matrix for k = 1, 2, . . . , ℓ. The AOR-multisplitting method with preweighting
is defined by

(4) xi+1 = H0(ω, γ)xi +G0(ω, γ)b, i = 0, 1, 2, . . . ,

where

G0(ω, γ) = ω

ℓ∑

k=1

(D − γLk)
−1Ek,

H0(ω, γ) = I − ω

ℓ∑

k=1

(D − γLk)
−1EkA.

(5)

Notice that ωA = (D−γLk)−((1− ω)D + (ω − γ)Lk + ωVk) for k = 1, 2, . . . , ℓ
and

H0(ω, γ)
T = AT

(
I − ω

ℓ∑

k=1

Ek(D − γLk
T )−1AT

)
A−T .

Let H̃(ω, γ) = I − ω
∑ℓ

k=1
Ek(D − γLk

T )−1AT . Then H̃(ω, γ) is similar to

H0(ω, γ)
T and H̃(ω, γ) can be written as

H̃(ω, γ) =

ℓ∑

k=1

Ek(D − γLk
T )−1

(
(1− ω)D + (ω − γ)Lk

T + ωVk
T
)
.

Notice that H̃(ω, γ) is an iteration matrix of the multisplitting method corre-
sponding to a multisplitting

(
1

ω
(D − γLk

T ),
1

ω
((1 − ω)D + (ω − γ)Lk

T + ωVk
T ), Ek

)
, k = 1, 2, . . . , ℓ
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of AT . The following lemma provides a convergence result of the multisplitting
method corresponding to a multisplitting
(
1

ω
(D − γLk

T ),
1

ω
((1 − ω)D + (ω − γ)Lk

T + ωVk
T ), Ek

)
, k = 1, 2, . . . , ℓ

of AT when A is an H-matrix.

Lemma 2.1. Let A = D − B be an n × n H-matrix with D = diag(A). Let

A = D − Lk − Vk, where Lk is a strictly lower triangular matrix and Vk is a

general matrix for k = 1, 2, . . . , ℓ. Assume that 〈A〉 = |D| − |Lk| − |Vk| for k =

1, 2, . . . , ℓ. If 0 < γ ≤ ω < 2

1+α
, then ρ

(
H̃(ω, γ)

)
< 1, where α = ρ(|D|−1|B|)

and

H̃(ω, γ) =

ℓ∑

k=1

Ek(D − γLk
T )−1((1 − ω)D + (ω − γ)Lk

T + ωVk
T ).

Proof. From the assumption, 〈AT 〉 = |D| − |Lk
T | − |Vk

T | for k = 1, 2, . . . , ℓ.
Notice that for k = 1, 2, . . . , ℓ,

(6) ω〈AT 〉 = (|D| − γ|Lk
T |)−

(
(1− ω)|D|+ (ω − γ)|Lk

T |+ ω|Vk
T |
)
.

Since D− γLk is an H-matrix, (D− γLk)
T is also an H-matrix. Consider the

following inequality

|H̃(ω, γ)| ≤

ℓ∑

k=1

Ek〈D − γLk
T 〉−1

(
|1− ω||D|+ (ω − γ)|Lk

T |+ ω|Vk
T |
)

=
ℓ∑

k=1

Ek(|D| − γ|Lk
T |)−1

(
|1− ω||D|+ (ω − γ)|Lk

T |+ ω|Vk
T |
)
.

Let we define

H⋆(ω, γ) =

ℓ∑

k=1

Ek(|D| − γ|Lk
T |)−1

(
|1− ω||D|+ (ω − γ)|Lk

T |+ ω|Vk
T |
)
.

Then we have

(7) |H̃(ω, γ)| ≤ H⋆(ω, γ).

We first consider the case where 0 < γ ≤ ω ≤ 1. Since (|D|−γ|Lk
T |)−1 ≥ 0 and

(1−ω)|D|+(ω−γ)|Lk
T |+ω|Vk

T | ≥ 0, (6) is a regular splitting of ω〈AT 〉 for each

k = 1, 2, . . . , ℓ. Since 〈AT 〉−1 ≥ 0, ρ(H⋆(ω, γ)) < 1. From (7), ρ(H̃(ω, γ)) < 1
for 0 < γ ≤ ω ≤ 1. Next we consider the case where 1 < ω < 2

1+α
and γ ≤ ω.

Let

Ñk(ω, γ) = (ω − 1)|D|+ (ω − γ)|Lk
T |+ ω|Vk

T | (1 ≤ k ≤ ℓ),

Ã = (2− ω)|D| − ω|BT |.
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It is easy to show that Ã = (|D|− γ|Lk
T |)− Ñk(ω, γ) for all k = 1, 2, . . . , ℓ. By

simple calculation, one obtains

(8) |H̃(ω, γ)| ≤
ℓ∑

k=1

Ek(|D| − γ|Lk
T |)−1Ñk(ω, γ).

Since ω < 2

1+α
, ωα

2−ω
< 1 and thus

ω

2− ω
ρ(|D|−1|BT |) =

ω

2− ω
ρ(|D|−1|B|) =

ωα

2− ω
< 1.

Since Ã = (2 − ω)|D| − ω|BT | is a regular splitting of Ã, Ã−1 ≥ 0. Since

Ã = (|D|−γ|Lk
T |)−Ñk(ω, γ) is a regular splitting of Ã for each k = 1, 2, . . . , ℓ,

ρ
(∑ℓ

k=1
Ek(|D| − γ|Lk

T |)−1Ñk(ω, γ)
)

< 1. From (8), ρ(H̃(ω, γ)) < 1 for

1 < ω < 2

1+α
and γ ≤ ω. Therefore, ρ(H̃(ω, γ)) < 1 for 0 < γ ≤ ω < 2

1+α
. �

The following theorem provides a convergence result of the AOR-multisplitt-
ing method with preweighting when A is an H-matrix.

Theorem 2.2. Let A = D −B be an n× n H-matrix with D = diag(A). Let

A = D − Lk − Vk, where Lk is a strictly lower triangular matrix and Vk is

a general matrix for k = 1, 2, . . . , ℓ. Assume that 〈A〉 = |D| − |Lk| − |Vk| for
k = 1, 2, . . . , ℓ. If 0 < γ ≤ ω < 2

1+α
, then

ρ (H0(ω, γ)) < 1,

where H0(ω, γ) = I − ω
∑ℓ

k=1
(D − γLk)

−1EkA and α = ρ(|D|−1|B|).

Proof. Let H̃(ω, γ) = I−ω
∑ℓ

k=1 Ek(D−γLk
T )−1AT . Since H̃(ω, γ) is similar

to H0(ω, γ)
T , ρ(H̃(ω, γ)) = ρ(H0(ω, γ)). From Lemma 2.1, ρ(H̃(ω, γ)) < 1 for

0 < γ ≤ ω < 2

1+α
. Therefore, ρ(H0(ω, γ)) < 1 for 0 < γ ≤ ω < 2

1+α
. �

Notice that if A is an M -matrix, then A is an H-matrix. We easily obtain
the following corollary which is a convergence results of the AOR-multisplitting
method with preweighting when A is an M -matrix.

Corollary 2.3. Let A = D − B be an n × n M -matrix with D = diag(A).
Let A = D − Lk − Vk, where Lk ≥ 0 is a strictly lower triangular matrix and

Vk ≥ 0 is a general matrix for k = 1, 2, . . . , ℓ. If 0 < γ ≤ ω < 2

1+α
, then

ρ (H0(ω, γ)) < 1,

where H0(ω, γ) = I − ω
∑ℓ

k=1
(D − γLk)

−1EkA and α = ρ(D−1B).

The SSOR-multisplitting method with preweighting is defined by

(9) xi+1 = H0(ω)xi +G0(ω)b, i = 0, 1, 2, . . . ,
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where

G0(ω) = ω(2− ω)
ℓ∑

k=1

(
(D − ωLk)D

−1(D − ωVk)
)
−1

Ek,

H0(ω) = I − ω(2− ω)

ℓ∑

k=1

(
(D − ωLk)D

−1(D − ωVk)
)
−1

EkA.

(10)

Notice that for k = 1, 2, . . . , ℓ,

ω(2− ω)A =(D − ωLk)D
−1(D − ωVk)

− ((1 − ω)D + ωLk)D
−1 ((1− ω)D + ωVk)

and

H0(ω)
T = AT

(
I − ω(2− ω)

ℓ∑

k=1

Ek

(
(D − ωLk)D

−1(D − ωVk)
)
−T

AT

)
A−T .

Let H̃(ω) = I − ω(2 − ω)
∑ℓ

k=1
Ek

(
(D − ωLk)D

−1(D − ωVk)
)
−T

AT . Then

H̃(ω) is similar to H0(ω)
T and H̃(ω) can be written as

H̃(ω) =
ℓ∑

k=1

EkMk(ω)
−TNk(ω)

T ,

whereMk(ω) = (D−ωLk)D
−1(D−ωVk) and Nk(ω) = ((1−ω)D+ωLk)D

−1((1

−ω)D+ ωVk). Note that H̃(ω) is an iteration matrix of multisplitting method
corresponding to a multisplitting

(
1

ω(2− ω)
Mk(ω)

T ,
1

ω(2− ω)
Nk(ω)

T , Ek

)
, k = 1, 2, . . . , ℓ

of AT . The following theorem provides a convergence result of the SSOR-
multisplitting method with preweighting when A is an H-matrix.

Theorem 2.4. Let A = D −B be an n× n H-matrix with D = diag(A). Let

A = D − Lk − Vk, where Lk is a strictly lower triangular matrix and Vk is

a general matrix for k = 1, 2, . . . , ℓ. Assume that 〈A〉 = |D| − |Lk| − |Vk| for
k = 1, 2, . . . , ℓ. If 0 < ω < 2

1+α
, then

ρ (H0(ω)) < 1,

where H0(ω) = I−ω(2−ω)
∑ℓ

k=1

(
(D − ωLk)D

−1(D − ωVk)
)
−1

EkA and α =

ρ(|D|−1|B|).

Proof. Let H̃(ω) = I − ω(2 − ω)
∑ℓ

k=1
Ek

(
(D − ωLk)D

−1(D − ωVk)
)
−T

AT .

Then, H̃(ω) is similar to H0(ω)
T and thus ρ(H̃(ω)) = ρ(H0(ω)). Hence, it is



CONVERGENCE OF MULTISPLITTING METHODS 1003

sufficient to show that ρ(H̃(ω)) < 1. Notice that (D− ωLk)
T and (D− ωVk)

T

are H-matrices since 0 < ω < 2

1+α
and α < 1. For k = 1, 2, . . . , ℓ, let

M̃k(ω) = (|D| − ω|UT
k |) |D−1| (|D| − ω|LT

k |),

Ñk(ω) = (|1 − ω||D|+ ω|UT
k |) |D−1| (|1− ω||D|+ ω|LT

k |),

H∗(ω) =

ℓ∑

k=1

EkM̃k(ω)
−1Ñk(ω),

Ã(ω) = M̃k(ω)− Ñk(ω).

Then it can be easily shown that

(11) |H̃(ω)| ≤ H∗(ω).

We first consider the case where 0 < ω ≤ 1. By simple calculation, Ã(ω) =

ω(2 − ω)〈A〉T . Since Ã(ω) = M̃k(ω) − Ñk(ω) is a regular splitting of Ã(ω)

and Ã(ω)−1 ≥ 0, ρ(H∗(ω)) < 1. From (11), ρ(H̃(ω)) < 1 for 0 < ω ≤ 1. We

next consider the case where 1 < ω < 2

1+α
. By simple calculation, Ã(ω) =

ω(2− ω)|D| − ω2|BT |. Since ω < 2

1+α
, ωα

2−ω
< 1 and thus

ω2

ω(2− ω)
ρ(|D|−1|BT |) =

ω

2− ω
ρ(|D|−1|B|) < 1.

Hence Ã(ω)−1 ≥ 0. Since Ã(ω) = M̃k(ω) − Ñk(ω) is a regular splitting of

Ã(ω), ρ(H∗(ω)) < 1. From (11), ρ(H̃(ω)) < 1 for 1 < ω < 2

1+α
. Therefore,

ρ(H̃(ω)) < 1 for 0 < ω < 2

1+α
. �

Corollary 2.5. Let A = D − B be an n × n M -matrix with D = diag(A).
Let A = D − Lk − Vk, where Lk ≥ 0 is a strictly lower triangular matrix and

Vk ≥ 0 is a general matrix for k = 1, 2, . . . , ℓ. If 0 < ω < 2

1+α
, then

ρ (H0(ω)) < 1,

where H0(ω) = I−ω(2−ω)
∑ℓ

k=1

(
(D − ωLk)D

−1(D − ωVk)
)
−1

EkA and α =

ρ(D−1B).

We now provide numerical results to illustrate the convergence of the multi-
splitting methods with preweighting. All numerical values are computed using
MATLAB.

Example 2.6. Suppose that ℓ = 3. Consider an H-matrix A of the form

A =




F I 0

−I F I

0 −I F



 , where F =




4 −1 0
1 4 −1
0 1 4



 and I =




1 0 0
0 1 0
0 0 1



 .
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Table 1. Numerical values of ρ(H0(ω, γ)) for Example 2.6

ω γ ρ(H0(ω, γ)) ω γ ρ(H0(ω, γ))
1.17 1.17 0.8470 0.9 0.9 0.2647

1.0 0.6542 0.8 0.2880
0.8 0.5716 0.7 0.3384
0.7 0.5889 0.8 0.8 0.2540

0.6 0.6215 0.7 0.2946
1.1 1.1 0.6214 0.6 0.3517

1.0 0.5574 0.7 0.7 0.3306

0.9 0.5043 0.6 0.3539
0.8 0.4904 0.5 0.4002
0.7 0.5143 0.6 0.6 0.4159

0.6 0.5516 0.5 0.4344
1.0 1.0 0.4204 0.4 0.4683

0.9 0.3800 0.5 0.5 0.5076

0.8 0.3812 0.4 0.5232
0.7 0.4168 0.3 0.5472

Table 2. Numerical values of ρ(H0(ω)) for Example 2.6

ω ρ(H0(ω)) ω ρ(H0(ω))
1.17 0.1603 0.7 0.1353
1.1 0.1279 0.6 0.1939
1.0 0.1014 0.5 0.2728
0.9 0.1172 0.4 0.3731
0.8 0.1000 0.3 0.4961

Let F = D∗ − L∗ − U∗, where D∗ = diag(F ),

L∗ =




0 0 0
−1 0 0
0 −1 0


 , and U∗ =



0 1 0
0 0 1
0 0 0


 .

Let D = diag(A), B = D −A,

L1 =





L∗ 0 0

I L∗ 0

0 0 L∗



 , L2 =





L∗ 0 0

0 L∗ 0

0 I L∗



 , L3 =





L∗ 0 0

0 L∗ 0

0 0 L∗



 ,

V1 =





U∗ −I 0

0 U∗ −I

0 I U∗



 , V2 =





U∗ −I 0

I U∗ −I

0 0 U∗



 , V3 =





U∗ −I 0

I U∗ −I

0 I U∗



 ,

E1 =




I 0 0
0 0 0
0 0 0



 , E2 =




0 0 0
0 I 0
0 0 0



 , and E3 =




0 0 0
0 0 0
0 0 I



 .
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Then, A = D−Lk−Uk and 〈A〉 = |D|−|Lk|−|Uk| for k = 1, 2, 3. The iteration
matrix for the AOR-multisplitting method with preweighting is H0(ω, γ) = I−

ω
∑ℓ

k=1(D−γLk)
−1EkA, and the iteration matrix for the SSOR-multisplitting

method with preweighting is given by

H0(ω) = I − ω(2− ω)

ℓ∑

k=1

(
(D − ωLk)D

−1(D − ωVk)
)
−1

EkA.

Note that α = ρ(|D|−1|B|) ≈ 0.7071 and 2

1+α
≈ 1.1716. For various values of

ω and γ, the numerical values of ρ(H0(ω, γ)) are listed in Table 1. For various
values of ω, the numerical values of ρ(H0(ω)) are listed in Table 2.

From Tables 1 and 2, it can be seen that numerical results are in good
agreement with the theoretical results obtained in this section. For Exam-
ple 2.6, the AOR-multisplitting method with preweighting performs best for
about ω = γ = 0.8, and the SSOR-multisplitting method with preweighting
performs best for about ω = 0.8. Notice that the optimal values of ω and γ

vary depending upon the problem. Future work will include theoretical study
for finding optimal values of ω and γ for which these multisplitting methods
perform best.
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