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CLASS-PRESERVING AUTOMORPHISMS OF GENERALIZED

FREE PRODUCTS AMALGAMATING A CYCLIC NORMAL

SUBGROUP

Wei Zhou and Goansu Kim

Abstract. In general, a class-preserving automorphism of generalized
free products of nilpotent groups, amalgamating a cyclic normal subgroup
of order 8, need not be an inner automorphism. We prove that every class-

preserving automorphism of generalized free products of finitely generated
nilpotent groups, amalgamating a cyclic normal subgroup of order less
than 8, is inner.

1. Introduction

An automorphism α of a group G is called a class-preserving (or conjugating)
automorphism if, for each g ∈ G, α(g) and g are conjugate in G. Burnside
[3] constructed a group of order 36 admitting class-preserving automorphisms
which are not inner. Also Wall [11] constructed a group of order 32 having the
same property. On the other hand, Grossman [6] defined that a group G has
Property A if all class-preserving automorphisms of G are inner. She proved
that free groups and fundamental groups of compact orientable surfaces have
Property A. Segal [10] constructed a finitely generated torsion-free nilpotent
group which does not have Property A. However, Endimioni [5] showed that
free nilpotent groups have Property A.

In [1], it was shown that generalized free products of two free groups, amal-
gamating a maximal cyclic subgroup, have Property A. Recently, this result
was improved, in [13], that tree products of finitely generated nilpotent or free
groups, amalgamating infinite cyclic subgroups, have Property A. However,
there exists a generalized free product of nilpotent groups, amalgamating a
cyclic normal subgroup of order 8, which has not Property A (Example 5.4).
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In this paper we show that generalized free products of finitely generated nilpo-
tent groups, amalgamating a cyclic normal subgroup of order less than 8, have
Property A.

Since Grossman [6] proved that outer automorphism groups of finitely gen-
erated conjugacy separable groups with Property A are residually finite, the
groups mentioned above with Property A have residually finite outer automor-
phism groups.

2. Preliminaries

Throughout this paper we use standard notation and terminology.
If A and B are groups, then A ∗H B denotes the generalized free product

of A and B amalgamating H. x ∼G y means that x and y are conjugate in
G, otherwise x ̸∼G y. Inn g denotes the inner automorphism of G induced by
g ∈ G. Out(G) denotes the outer automorphism group, Aut(G)/Inn(G), of G.
CG(g) denotes the centralizer of g in G and Z(G) denotes the center of G.

Definition 2.1. By a class-preserving (or conjugating) automorphism of a
group G we mean an automorphism α which is such that, for each g ∈ G, there
exists kg ∈ G, depending on g, so that α(g) = k−1

g gkg.

Definition 2.2 ([6]). A group G has Property A if for each class-preserving
automorphism α of G, there exists a single element k ∈ G such that α(g) =
k−1gk for all g ∈ G, i.e., α = Inn k.

We give some known results which are of fundamental importance for our
purpose. Amongst these the following theorem plays an important part in the
study of conjugate class in generalized free products.

Theorem 2.3 ([8, Theorem 4.6]). Let G = A∗HB and let x ∈ G be of minimal
length in its conjugacy class. Suppose that y ∈ G is cyclically reduced, and that
x ∼G y.

(1) If ||x|| = 0, then ||y|| ≤ 1 and, if y ∈ A, then there is a sequence
h1, h2, . . . , hr of elements in H such that y ∼A h1 ∼B h2 ∼A · · · ∼ hr = x.

(2) If ||x|| = 1, then ||y|| = 1 and, either x, y ∈ A and x ∼A y, or x, y ∈ B
and x ∼B y.

(3) If ||x|| ≥ 2, then ||x|| = ||y|| and y ∼H x∗, where x∗ is a cyclic permu-
tation of x.

Theorem 2.4 ([6, Grossman]). Let B be a finitely generated, conjugacy sepa-
rable group with Property A. Then Out(B) is RF .

The next result was first proved in [12, Theorem 3.2] where the proof is
quite long. Here we reproduce a slightly modified proof of [13] for the reader’s
convenience.

Theorem 2.5 ([12, 13]). Let G = A ∗H B, where A ̸= H ̸= B. If H ⊂
Z(A) ∩ Z(B), then G has Property A.
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Proof. Let G = G/H = (A/H) ∗ (B/H). Then G has Property A [2, 9]. Let α
be a class-preserving automorphism of G. Since H = Z(G), clearly α(H) = H.

Hence α(g) = α(g) is a class-preserving automorphism of G. Thus α = Innw
for some w ∈ G. Therefore, for each g ∈ G, we see that α(g) = w−1hggw for
some hg ∈ H. Let α′ = Innw−1◦α. Then α′ is a class-preserving automorphism
of G and, for each g ∈ G, α′(g) = hgg where hg ∈ H.

Let b ∈ B\H be fixed and α′(b) = hbb for hb ∈ H. For each x ∈ A\H,
xb ∼G α′(x)α′(b) = hxhbxb. By Theorem 2.3 xb ∼H hxhbxb. Since H ⊂ Z(G),
we have xb = hxhbxb. Hence hx = h−1

b for all x ∈ A\H. Thus, α′(x) = h−1
b x for

all x ∈ A\H. Since α′ is a class-preserving automorphism of G and H = Z(G),
α′(c) = c for all c ∈ H.

(1) Suppose |A/H| ≥ 4 (or |B/H| ≥ 4).
Let A = A/H and a1 ∈ A\H. Since |A| ≥ 4, there exists a2 ∈ A such that

1 ̸= a2 ̸= a±1
1 . Let a3 = a1a2. Then a3 ̸= 1. Thus ai ̸∈ H for all 1 ≤ i ≤ 3.

By above, α′(a3) = h−1
b a3 and α′(a3) = α′(a1)α

′(a2) = h−1
b a1h

−1
b a2 = h−2

b a3.
Hence hb = 1. Thus α′(x) = x for all x ∈ A\H. Since b ∈ B\H is arbitrary
and hb = 1, we also have α′(b) = b for all b ∈ B\H. Hence α′ = Inn 1.

(2) Suppose |A/H| < 4 and |B/H| < 4.
Since H ⊂ Z(A), A is abelian and A = ⟨a,H⟩ for some a ∈ A\H. Similarly,

B is abelian and B = ⟨b,H⟩ for some b ∈ B\H. Let α′(a) = ah, where h ∈ H.
Clearly {a}A ∩ H = ∅. Since a ∼G α′(a) = ah, by Theorem 2.3 we have
a ∼A ah. Since A is abelian, a = ah. Thus h = 1, that is α′(a) = a. Similarly,
α′(b) = b. Hence α′ = Inn 1.

Hence, α = Innw. Thus G has Property A. □
Throughout the next two sections, we shall use the following hypothesis.
Hypothesis (∗): Suppose A,B are finitely generated nilpotent groups and p

is a prime integer. Let G = A∗⟨c⟩B, where ⟨c⟩�A,B and |c| = p2. In addition,
we suppose that A ̸= ⟨c⟩ ̸= B throughout the paper.

Remark 2.6. Let A be a nilpotent group. For 1 ̸= ⟨c⟩�A, we have ⟨c⟩∩Z(A) ̸=
1. Hence, if |c| = p2 (p is a prime), then ⟨c⟩ ∩ Z(A) = ⟨cp⟩ or ⟨c⟩. Thus
⟨cp⟩ ⊂ Z(A). Therefore, if G is as in (∗), then ⟨cp⟩ ⊂ Z(A) ∩ Z(B).

Lemma 2.7. Let G be as in (∗). Let α be a class-preserving automorphism
of G such that for each g ∈ G, α(g) = gcip for some integer 0 ≤ i < p. Let
X = {g ∈ G | α(g) = g}. Then X �G and |G : X| = 1 or p.

Proof. Since α is an automorphism of G, X is a subgroup of G. For g ∈ G
and x ∈ X, α(g−1xg) = α(g)−1α(x)α(g) = (gcip)−1xgcip. By Remark 2.6,
cp ∈ Z(A) ∩ Z(B). Hence α(g−1xg) = g−1xg. Thus X �G.

Let Xi = {g ∈ G | α(g) = gcip}, where 0 ≤ i < p. Then X = X0

and G = ∪p−1
i=0Xi. Now suppose X ̸= G. Hence there exists g ∈ G such

that α(g) = gcip for some 1 ≤ i < p. Let k be a positive integer such that
ki ≡ 1 (mod p). Then α(gk) = gkckip = gkcp. Let a = gk. Then α(a) = acp

and α(ai) = aicip. Hence ai ∈ Xi and Xi ̸= ∅ for each 1 ≤ i < p. Let
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x, y ∈ Xi. Then α(x) = xcip and α(y) = ycip. Since ⟨cp⟩ ≤ Z(A) ∩ Z(B), we
have α(x−1y) = (α(x))−1α(y) = x−1y. Hence x−1y ∈ X. Thus Xi is a coset
of X in G. In fact Xi = Xai for 1 ≤ i < p. Hence |G : X| = p. Therefore,
|G : X| = 1 or p. □

It is interesting to see that Xi defined in the proof of Lemma 2.7 is an
α-invariant coset of G. Let g ∈ Xi. Then α(g) = gcip. Since α is a class-
preserving automorphism, α(g) = k−1

g gkg for some kg ∈ G. Assume α(kg) =

kgc
jp for some integer j. Then

α(α(g)) = α(kg)
−1α(g)α(kg) = (kgc

jp)−1gcip(kgc
jp) = k−1

g gkgc
ip = α(g)cip.

Hence, α(g) ∈ Xi for each g ∈ Xi, which implies that Xi is α-invariant.
Throughout this paper, X will be used in the meaning of Lemma 2.7.

3. The case that |A| ≥ 32 or |B| ≥ 32

We begin by studying a special kind of class-preserving automorphism α of
G in (∗) such that for each g ∈ G, α(g) = gcip for some integer 0 ≤ i < p,
which plays an important role in this paper.

Lemma 3.1. Let G be as in (∗). Let α be a class-preserving automorphism of
G such that for each g ∈ G, α(g) = gcip for some integer 0 ≤ i < p. Suppose,
for each g ∈ G, α(g) = k−1

g gkg for some kg ∈ G.
(1) If there exists a ∈ A\⟨c⟩ such that [a, c] = 1 and α(a) = a, then we can

take ky ∈ ⟨c⟩ for each y ∈ B\⟨c⟩.
(2) If there exist a ∈ A\⟨c⟩ and b ∈ B\⟨c⟩ such that [a, c] = 1 = [b, c],

α(a) = a and α(b) = b, then α(c) = c and we can take kx, ky ∈ ⟨c⟩ for each
x ∈ A and y ∈ B.

Proof. (1) Suppose that there exists a ∈ A\⟨c⟩ such that [a, c] = 1 and α(a) =
a. Let y ∈ B\⟨c⟩. By assumption, α(y) = ycip for some 0 ≤ i < p. If
i = 0, then we can take ky = 1 ∈ ⟨c⟩. Hence we let 1 ≤ i < p. Then
ay ∼G α(ay) = α(a)α(y) = aycip. By Theorem 2.3, ay ∼⟨c⟩ aycip. Hence

aycip = c−raycr for some r. Since [a, c] = 1, we have ycip = c−rycr. Since
α(y) = ycip, we can take ky = cr ∈ ⟨c⟩.

(2) Let α(c) = ccip for some 0 ≤ i < p. Let 1 + ip = k. By assumption,
there exist a ∈ A\⟨c⟩ and b ∈ B\⟨c⟩ such that [a, c] = 1 = [b, c], α(a) = a and
α(b) = b. Note that abc ∼G α(abc) = abck. By Theorem 2.3, abc ∼⟨c⟩ abck.

Since [a, c] = 1 = [b, c], we have abc = abck. Hence c = ck. Thus α(c) = ck = c.
By (1), we can take ky ∈ ⟨c⟩ for all y ∈ B and kx ∈ ⟨c⟩ for all x ∈ A. □

Lemma 3.2. Let G be as in (∗). Let α be a class-preserving automorphism
of G such that for each g ∈ G, α(g) = gcip for some integer 0 ≤ i < p. If
|A| ≥ p5, then there exists a ∈ A\⟨c⟩ such that [a, c] = 1 and α(a) = a.

Proof. Note that |A : CA(c)| is the number of conjugate class of c in A. Since
⟨c⟩ � A, |A : CA(c)| ≤ p2 − p. By Lemma 2.7, |A : A ∩ X| = 1 or p. Hence
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|A : X ∩ CA(c)| ≤ p3 − p2. Thus |X ∩ CA(c)| > p2. Since |c| = p2, there exists
a ∈ X ∩ CA(c)\⟨c⟩. It follows that a ∈ A\⟨c⟩, [a, c] = 1 and α(a) = a. □

From now on, we focus on the case that |c| = 4.

Lemma 3.3. Let G be as in (∗) with p = 2. Let α be a class-preserving
automorphism such that α(g) = g or gc2 for each g ∈ G. If c ̸∈ Z(A) and
c ̸∈ Z(B), then α = Inn 1 or Inn c.

Proof. Since c ̸∈ Z(A), there exists a ∈ A\CA(c). Note that |A : CA(c)| is
the number of conjugate class of c in A. Since ⟨c⟩ � A and |c| = 4, we have
|A : CA(c)| = 2. Hence, we have A = ⟨a,CA(c)⟩ and a−1ca = c−1. Similarly,
|B : CB(c)| = 2, and there exists b ∈ B\CB(c), and B = ⟨b, CB(c)⟩ with
b−1cb = c−1.

We first claim that α(x)α(y) = xy for all x ∈ A\CA(c) and y ∈ B\CB(c).
Clearly, α(x) ∈ A\⟨c⟩ and α(y) ∈ B\⟨c⟩. Since xy ∼G α(xy) = α(x)α(y),
by Theorem 2.3, xy ∼⟨c⟩ α(x)α(y). Thus α(x)α(y) = c−rxycr for some r.

Since x ∈ A\CA(c), x
−1cx = c−1. Similarly, y−1cy = c−1 for y ∈ B\CB(c).

Hence c−rxycr = xy. Thus we have α(x)α(y) = xy for all x ∈ A\CA(c) and
y ∈ B\CB(c).

Now we prove that α(x) = x for all x ∈ CA(c). Let x ∈ CA(c). Then
xa ∈ A\CA(c). Hence, by above, α(xab) = xab and α(ab) = ab. It follows that
α(x) = x for all x ∈ CA(c). Similarly, α(y) = y for all y ∈ CB(c).

(1) Suppose α(a) = a. By above, A = ⟨a,CA(c)⟩ and α(x) = x for all
x ∈ CA(c). Hence, we have α(x) = x for all x ∈ A. Since α(a)α(b) = ab, we
have α(b) = b. Then, as before, α(y) = y for all y ∈ B. Thus α = Inn 1.

(2) Suppose α(a) = ac2. By above, a−1ca = c−1. Hence α(a) = ac2 = c−1ac.
Since α(x) = x for all x ∈ CA(c), we have α(x) = x = c−1xc for all x ∈ CA(c).
It follows that α(x) = c−1xc for all x ∈ A. Since α(a)α(b) = ab, we have
α(b) = bc2. Then, as before, α(y) = c−1yc for all y ∈ B. Hence, α = Inn c. □

Theorem 3.4. Let G be as in (∗) with p = 2. If |A|, |B| ≥ 25, then G has
Property A.

Proof. Let α be a class-preserving automorphism of G. Consider G = G/⟨c2⟩.
Let ᾱ be the map of Ḡ such that ᾱ(ḡ) = α(g). Then α is a class-preserving
automorphism of G. Note that G = A ∗⟨c⟩ B, where A = A/⟨c2⟩ and B =

B/⟨c2⟩. Since A is a finitely generated nilpotent group and ⟨c⟩�A with |c| = 2,
⟨c⟩ ⊂ Z(A) (Remark 2.6). Similarly, ⟨c⟩ ⊂ Z(B). Hence, by Theorem 2.5, we
see α is an inner automorphism of G. Hence there exists a ∈ G such that
α(ḡ) = ā−1ḡā for all ḡ ∈ Ḡ. Thus, for each g ∈ G, α(g) = a−1gc2ia for some i.
Let α0 = Inn a−1 ◦α. Then for each g ∈ G, α0(g) = g or gc2. Since we want to
prove that α is an inner automorphism, it suffices to prove that α0 is an inner
automorphism. So we can assume that for each g ∈ G, α(g) = g or gc2. Hence,
by Lemma 3.1 and Lemma 3.2, we have α(c) = c and kx, ky ∈ ⟨c⟩ for all x ∈ A
and y ∈ B.
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If c ∈ Z(A)∩Z(B), then G has Property A by Theorem 2.5. If c ̸∈ Z(A) and
c ̸∈ Z(B), by Lemma 3.3, α is an inner automorphism. Hence, we assume that
c ̸∈ Z(A) and c ∈ Z(B) (The other case c ∈ Z(A) and c ̸∈ Z(B) is similar).
Since c ̸∈ Z(A), as in Lemma 3.3, we have A = ⟨a,CA(c)⟩ and a−1ca = c−1.

(1) Suppose α(a) = a. Since kx ∈ ⟨c⟩ for all x ∈ A, we have α(x) = x for all
x ∈ CA(c). Since A = ⟨a,CA(c)⟩, α(x) = x for all x ∈ A. Since ky ∈ ⟨c⟩ for all
y ∈ B and c ∈ Z(B), α(y) = y for all y ∈ B. Thus α = Inn 1.

(2) Suppose α(a) = ac2. Since a−1ca = c−1, we have α(a) = ac2 = c−1ac.
Also, α(x) = x = c−1xc for x ∈ CA(c). Thus α(x) = c−1xc for all x ∈ A. Since
ky ∈ ⟨c⟩ for all y ∈ B and c ∈ Z(B), α(y) = y = c−1yc for all y ∈ B. Hence
α = Inn c. □

Lemma 3.5. Let G be as in (∗) with p = 2. Let α be a class-preserving
automorphism of G such that α(g) = g or gc2 for each g ∈ G. If |A| ≥ 24 and
c ∈ Z(A), then α(x) = x for all x ∈ A.

Proof. Let a1 ∈ A\⟨c⟩ and A = A/⟨c⟩. Clearly |A| ≥ 4. Hence there exists
a2 ∈ A such that 1 ̸= a2 ̸= a±1

1 . Let a3 = a1a2. Then a3 ̸= 1 and ai ̸= aj for

all 1 ≤ i ̸= j ≤ 3. Thus ai ̸∈ ⟨c⟩ and a−1
i aj ̸∈ ⟨c⟩ for all 1 ≤ i ̸= j ≤ 3.

We first claim that α(ai) = ai for i = 1, 2, 3. Suppose α(a1) = a1 and
α(a2) = a2c

2. Let b ∈ B\⟨c⟩. Since α(b) = b or bc2 and c2 ∈ Z(G), we have
α(a1ba2b) = α(a1)α(b)α(a2)α(b) = c2a1ba2b. Hence a1ba2b ∼G α(a1ba2b) =
c2a1ba2b. By Theorem 2.3, we have c2a1ba2b ∼⟨c⟩ (a1ba2b)

∗, where (a1ba2b)
∗

is a cyclic permutation of a1ba2b. Hence we have either
(1) c2a1ba2b = c−r(a1ba2b)c

r or
(2) c2a1ba2b = c−r(a2ba1b)c

r for some r.
By using c ∈ Z(A) and b−1cb = c±1, (1) implies c2a1ba2b = a1ba2b and (2)

implies c2a1ba2b = a2ba1b. Hence we have either c2 = 1 from (1) or a2 ∈ a1⟨c⟩
from (2). Both are impossible. Thus we have either α(a1) = a1 and α(a2) = a2
or α(a1) = a1c

2 and α(a2) = a2c
2. But if α(a1) = a1c

2 and α(a2) = a2c
2, then

α(a3) = α(a1a2) = a1c
2a2c

2 = a1a2 = a3. Then, by considering α(a1) and
α(a3), we have a contradiction as before. Therefore, α(ai) = ai for i = 1, 2, 3.
Since a1 ∈ A\⟨c⟩ is arbitrary, we have α(x) = x for all x ∈ A\⟨c⟩.

We shall show that α(c) = c. Let a1, a2 ∈ A as above. Since α(c) =
c or c3, let α(c) = cs. Clearly ca1ba2b ∼G α(ca1ba2b) = α(c)α(a1ba2b) =
csa1ba2b. Hence, we have csa1ba2b ∼⟨c⟩ (ca1ba2b)

∗, where (ca1ba2b)
∗ is a cyclic

permutation of ca1ba2b. Thus, either (1) csa1ba2b = c−r(ca1ba2b)c
r or (2)

csa1ba2b = c−r(a2bca1b)c
r. As in above, (2) implies that a1 ∈ a2⟨c⟩, that

is, a−1
2 a1 ∈ ⟨c⟩, which is impossible. Hence we have cs = c from (1). Thus

α(c) = cs = c. Therefore, α(x) = x for all x ∈ A. □

Theorem 3.6. Let G be as in (∗) with p = 2. If |A| ≥ 25 and |B| = 4p1p2 for
primes p1, p2, then G has Property A.
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Proof. Let α be a class-preserving automorphism of G. As in Theorem 3.4, we
assume that α(g) = g or gc2 for each g ∈ G. By Theorem 2.5 and Lemma 3.3,
we consider the following two cases.

Case 1. c ̸∈ Z(A) and c ∈ Z(B).
As in Lemma 3.3, we have A=⟨a,CA(c)⟩ where a−1ca = c−1. By Lemma 3.5,

α(y) = y for all y ∈ B. Let x ∈ CA(c)\⟨c⟩. Since xb ∼G α(xb) and [x, c] =
1 = [b, c], as before, we have α(x)α(b) = xb. Since α(b) = b, α(x) = x for
x ∈ CA(c)\⟨c⟩.

Now if α(a) = a, then α = Inn 1. If α(a) = ac2, then α(a) = c−1ac. Since
α(x) = x = c−1xc for x ∈ CA(c) and α(y) = y = c−1yc for all y ∈ B, we have
α = Inn c.

Case 2. c ∈ Z(A) and c ̸∈ Z(B).
As in Lemma 3.3, we have B = ⟨b, CB(c)⟩, where |B : CB(c)| = 2 and

b−1cb = c−1. Let b1 ∈ CB(c)\⟨c⟩. Since |CB(c)| = 2p1p2 and |c| = 4, CB(c) =
⟨b1, c⟩. By Lemma 3.5, α(x) = x for all x ∈ A and, as in Case 1 above,
α(b1) = b1. Thus, if α(b) = b, then α = Inn 1. If α(b) = bc2, then α(b) = c−1bc.
Since B = ⟨b, CB(c)⟩ and α(b1) = b1 = c−1b1c, we have α(y) = c−1yc for all
y ∈ B. Clearly α(x) = x = c−1xc for all x ∈ A. Hence α = Inn c. □

Theorem 3.7. Let G be as in (∗) with p = 2. If |A| ≥ 25 and |B| = 4p1 for
some prime p1, then G has Property A.

Proof. Let α be a class-preserving automorphism of G. As before, we assume
that α(g) = g or gc2 for each g ∈ G. By Theorem 2.5 and Lemma 3.3, we
consider the following two cases.

Case 1. c ̸∈ Z(A) and c ∈ Z(B).
As before, let A = ⟨a,CA(c)⟩ where a−1ca = c−1. Let b ∈ B\⟨c⟩. Then

B = ⟨b, c⟩ is abelian. Let y ∈ B\⟨c⟩. Clearly y ∼G α(y). Since B is abelian,
{y}B ∩ ⟨c⟩ = ∅. Hence, by Theorem 2.3, y ∼B α(y). Thus α(y) = y for all
y ∈ B\⟨c⟩. In particular, α(b) = b and α(bc) = bc. Hence, α(c) = c. Let
x ∈ CA(c)\⟨c⟩. Clearly xb ∼G α(xb) = α(x)b. By Theorem 2.3, xb ∼⟨c⟩ α(x)b.
Since [x, c] = 1 = [b, c], as before, we have α(x)b = xb. Hence α(x) = x for
x ∈ CA(c)\⟨c⟩.

Now if α(a) = a, then α = Inn 1. If α(a) = ac2, then α(a) = c−1ac. Hence,
as before, α = Inn c.

Case 2. c ∈ Z(A) and c ̸∈ Z(B).
As in Case 1, let B = ⟨b, c⟩, where b−1cb = c−1. By Lemma 3.5, we have

α(x) = x for all x ∈ A. If α(b) = b, then α = Inn 1. If α(b) = bc2, then
α(b) = c−1bc. Hence, as before, α = Inn c. □

4. The case that |A|, |B| < 32

In this section, we show that G = A∗⟨c⟩B, where ⟨c⟩�A,B and |c| = 4, has
property A, if |A|, |B| < 32. In fact, we prove this in several cases in a little
bit generalized form.
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Theorem 4.1. Let G be as in (∗) with p = 2. If |A| = 4p1 and |B| = 4p2 for
primes p1, p2, then G has Property A.

Proof. Let α be a class-preserving automorphism of G. As before, we may
assume that α(g) = g or gc2 for each g ∈ G. If c ∈ Z(A) ∩ Z(B), then G has
Property A by Theorem 2.5. If c ̸∈ Z(A) and c ̸∈ Z(B), then by Lemma 3.3, α
is an inner automorphism. Hence we need only consider the case that c ∈ Z(A)
and c ̸∈ Z(B) (The other case that c ̸∈ Z(A) and c ∈ Z(B) is similar).

Let a ∈ A\⟨c⟩. Since |A| = 4p1 and |c| = 4, we have A = ⟨a, c⟩. Since
c ∈ Z(A), A is abelian. As in the proof of Lemma 3.3, B = ⟨b, c⟩, where b ̸∈ ⟨c⟩
and b−1cb = c−1.

We claim that α(x) = x for x ∈ A\⟨c⟩. Since A is abelian and x ∈ A\⟨c⟩,
we have {x}A ∩ ⟨c⟩ = ∅. Since x ∼G α(x) and α(x) is cyclically reduced, by
Theorem 2.3, x ∼A α(x). Since A is abelian, we have α(x) = x for x ∈ A\⟨c⟩.
In particular, α(a) = a and α(ac) = ac. Since α(ac) = α(a)α(c) = aα(c), we
have α(c) = c.

Now we have either α(b) = b or α(b) = bc2. If α(b) = b, then α = Inn 1.
If α(b) = bc2, then α(b) = c−1bc. Hence α(y) = c−1yc for all y ∈ B. Since
c ∈ Z(A), we have α(x) = x = c−1xc for all x ∈ A. Hence, α = Inn c. □

Theorem 4.2. Let G be as in (∗) with p = 2. If |A| = 4p1p2 and |B| = 4p3
for primes p1, p2, p3, then G has Property A.

Proof. Let α be a class-preserving automorphism of G. As before, we assume
that α(g) = g or gc2 for each g ∈ G. If c ∈ Z(A)∩Z(B), then G has Property
A by Theorem 2.5. If c ̸∈ Z(A) and c ̸∈ Z(B), by Lemma 3.3, α is an inner
automorphism. Hence, we consider the following cases.

Case 1. c ̸∈ Z(A) and c ∈ Z(B).
Since c ̸∈ Z(A), there exists a ∈ A\CA(c). As in the proof of Lemma 3.3,

|A : CA(c)| = 2 and A = ⟨a,CA(c)⟩, where a−1ca = c−1. Hence |CA(c)| =
2p1p2. Since |c| = 4, there exists a1 ∈ CA(c)\⟨c⟩. Then CA(c) = ⟨a1, c⟩. Hence
A = ⟨a, a1, c⟩, where a−1ca = c−1 and [a1, c] = 1.

Let b ∈ B\⟨c⟩. Then B = ⟨b, c⟩ and B is abelian (c ∈ Z(B)). As in the
proof of Theorem 4.1, α(y) = y for all y ∈ B\⟨c⟩. In particular, α(b) = b and
α(bc) = bc. Hence α(c) = c. Thus α(y) = y for all y ∈ B.

Clearly a1b ∼G α(a1)α(b) = α(a1)b. By Theorem 2.3, a1b ∼⟨c⟩ α(a1)b. Since
[a1, c] = [b, c] = 1, we have a1b = α(a1)b. Hence α(a1) = a1.

Hence, if α(a) = a, then α = Inn 1. If α(a) = ac2, then α(a) = a−1ca.
Clearly α(a1) = a1 = c−1a1c and α(y) = y = c−1yc for all y ∈ B. Hence
α = Inn c.

Case 2. c ∈ Z(A) and c ̸∈ Z(B).
By Lemma 3.5, α(x) = x for all x ∈ A. As before, we have B = ⟨b, c⟩,

where b−1cb = c−1. If α(b) = b, then clearly α = Inn 1. If α(b) = bc2, then
α(b) = c−1bc. Since α(x) = x = c−1xc for all x ∈ A, we have α = Inn c. □
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Theorem 4.3. Let G be as in (∗) with p = 2. If |A| = 4p1p2 and |B| = 4p3p4
for primes p1, p2, p3, p4, then G has Property A.

Proof. Let α be a class-preserving automorphism of G. As before, we assume
that α(g) = g or gc2 for each g ∈ G. If c ∈ Z(A)∩Z(B), then G has Property
A by Theorem 2.5. If c ̸∈ Z(A) and c ̸∈ Z(B), by Lemma 3.3, α is an inner
automorphism. Hence we assume c ̸∈ Z(A) and c ∈ Z(B) (The case that
c ∈ Z(A) and c ̸∈ Z(B) is similar).

As in Case 1 in Theorem 4.2, we have A = ⟨a, a1, c⟩, where a−1ca = c−1

and [a1, c] = 1. Since c ∈ Z(B) and |B| ≥ 16, by Lemma 3.5, α(y) = y for all
y ∈ B. As in Case 1 of Theorem 4.2, we can show that α(a1) = a1. Thus, if
α(a) = a, then α = Inn 1. If α(a) = ac2, then α(a) = c−1ac. Hence, as before,
α = Inn c. □

5. Conclusion

Theorem 5.1. Let A,B be finitely generated nilpotent groups. Let G = A ∗⟨c⟩
B, where ⟨c⟩� A,B and A ̸= ⟨c⟩ ̸= B. If |c| = 2p for an odd prime p, then G
has Property A.

Proof. Clearly |cp| = 2. Since cp is the only element of order 2 in ⟨c⟩, a−1cpa =
cp for all a ∈ A. Hence cp ∈ Z(A). Similarly, cp ∈ Z(B). By considering
G = G/⟨cp⟩ = A ∗⟨c⟩ B, where A = A/⟨cp⟩ and B = B/⟨cp⟩, as in the proof of
Theorem 3.4, we shall show that every class-preserving automorphism α of G
such that, for each g ∈ G, α(g) = g or gcp, is inner.

Let α be a class-preserving automorphism of G such that, for each g ∈ G,
α(g) = g or gcp. We first claim that α(x)α(y) = xy for all x ∈ A\⟨c⟩ and
y ∈ B\⟨c⟩. Since ⟨c⟩ � A, let x−1cx = cϵ, where (ϵ, 2p) = 1 and 1 ≤ ϵ < 2p.
Similarly, let y−1cy = cδ, where (δ, 2p) = 1 and 1 ≤ δ < 2p. Hence, for
each integer r, we have c−rxycr = xc−rϵycr = xyc−rϵδcr = xyc(1−ϵδ)r. Now
c(1−ϵδ)r ∈ ⟨c2⟩ (because ϵ, δ are odd). Since xy ∼G α(xy) = α(x)α(y), by
Theorem 2.3 we have xy ∼⟨c⟩ α(x)α(y). Thus α(x)α(y) = c−rxycr for some r.

By above, we have α(x)α(y) = xyc(1−ϵδ)r. Clearly cp ̸∈ ⟨c2⟩. Since α(x)α(y) =
α(xy) = xy or xycp, we must have α(xy) = xy.

By above, α(xyc) = xyc for x ∈ A\⟨c⟩ and y ∈ B\⟨c⟩. Since α(xy) = xy,
α(c) = c.

Case 1. |A| ≥ 6p (or, similarly, |B| ≥ 6p).
Let a ∈ A\⟨c⟩ be arbitrary. Let A = A/⟨c⟩. Then |A| ≥ 3. Hence there

exists u ∈ A such that 1 ̸= u ̸= a−1. Then u ̸∈ ⟨c⟩ and au ̸∈ ⟨c⟩. By above,
α(auy) = auy and α(uy) = uy for y ∈ B\⟨c⟩. Hence α(a) = a. This proves
that α(x) = x for all x ∈ A\⟨c⟩. Since α(x)α(y) = xy by above, α(y) = y for
all y ∈ B\⟨c⟩. Therefore α = Inn 1.

Case 2. |A| = 4p and |B| = 4p. Since ⟨c⟩ � A and |c| = 2p, there exists
a ∈ A\⟨c⟩ such that A = ⟨a, c⟩. Similarly, there exists b ∈ B\⟨c⟩ such that
B = ⟨b, c⟩.
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Subcase 1. c ̸∈ Z(A) and c ∈ Z(B) (similarly, c ∈ Z(A) and c ̸∈ Z(B)).
Clearly B is abelian. Since α(b) ∼G b, by Theorem 2.3 we have α(b) ∼B b.
Hence α(b) = b. Since α(ab) = ab, α(a) = a. Hence α = Inn 1.

Subcase 2. c ̸∈ Z(A) and c ̸∈ Z(B). Suppose α(a) = acp. Let α(a) =
k−1
a aka for ka ∈ G. Let ka = u1 · · ·us be an alternating product inG = A∗⟨c⟩B.

Then acp = u−1
s · · ·u−1

1 au1 · · ·us. Since a ̸∈ ⟨c⟩, u−1
1 au1 ̸∈ ⟨c⟩. Hence we have

u1 ∈ A and r = 1. Let u1 = aicj for some i, j. Then α(a) = u−1
1 au1 = c−jacj .

Let a−1ca = cλ, where (λ, 2p) = 1 and 1 ≤ λ < 2p. Then α(a) = c−jacj =
ac(1−λ)j . Since λ is odd, c(1−λ)j ∈ ⟨c2⟩. Hence α(a) = c−jacj = ac(1−λ)j ∈
a⟨c2⟩. This contradicts our assumption α(a) = acp. Hence α(a) = a. Thus
α(b) = b, since α(ab) = ab. Therefore, α = Inn 1. □

Corollary 5.2. Let A,B be finitely generated nilpotent groups. Let G = A∗⟨c⟩
B, where ⟨c⟩�A,B and A ̸= ⟨c⟩ ̸= B. If |c| < 8, then G has Property A.

Proof. If |c| = p for a prime integer p, then ⟨c⟩ ∩ Z(A) ̸= 1. Hence c ∈ Z(A).
Similarly, c ∈ Z(B). Thus, by Theorem 2.5, G has Property A if |c| = p for
a prime p. For |c| = 4, by theorems in Sections 3 and 4, G has Property A.
Theorem 5.1 shows that G has Property A if |c| = 6. Hence G has Property A
if |c| < 8. □

Since the generalized free products of finitely generated nilpotent groups,
amalgamating a cyclic subgroup, are conjugacy separable [4], combining with
Corollary 5.2 and Theorem 2.4, we have the following.

Theorem 5.3. Let A,B be finitely generated nilpotent groups. Let G = A ∗⟨c⟩
B, where ⟨c⟩ � A,B and A ̸= ⟨c⟩ ̸= B. If |c| < 8, then Out(G) is residually
finite.

It is interesting to see that the result is not true even when the amalgamating
normal subgroup is of order 8 by the following example [13].

Example 5.4. Consider the following groups isomorphic to C8 ⋊Aut(C8).

A = ⟨x, y, z : x8 = y2 = z2 = [y, z] = 1, xy = x−1, xz = x5⟩,
B = ⟨x, y1, z1 : x8 = y21 = z21 = [y1, z1] = 1, xy1 = x−1, xz1 = x5⟩.

The map ϕ : x → x, y → y, z → x4z defines a class-preserving automorphism
of A which is not inner [7]. Similarly, the map ϕ1 : x → x, y1 → y1, z1 → x4z1
defines a class-preserving automorphism of B.

Let G = A ∗⟨x⟩ B. Then the map φ : x → x, y → y, z → x4z, y1 →
y1, z1 → x4z1 defines an automorphism of G. It was proved in [13] that φ is a
class-preserving automorphism of G which is not inner.

Using the above example, it is not difficult to construct generalized free
products amalgamating a normal subgroup of order greater than 8 which have
not Property A.
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Example 5.5. Let A,B and G be as above. Consider

G1 = (A× ⟨d⟩) ∗H (B × ⟨d⟩),
where H = ⟨x⟩ × ⟨d⟩ and |d| = n. We note that if n is odd, then H is cyclic.
Since ⟨x⟩ is normal in both A and B, H = ⟨x⟩ × ⟨d⟩ is normal in A× ⟨d⟩ and
in B × ⟨d⟩. Then it is clear that G1 = G × ⟨d⟩. Since G has not Property A,
G1 has not Property A.

References

[1] R. B. J. T. Allenby, G. Kim, and C. Y. Tang, Residual finiteness of outer automorphism
groups of certain pinched 1-relator groups, J. Algebra 246 (2001), no. 2, 849–858.

[2] , Residual finiteness of outer automorphism groups of finitely generated non-
triangle Fuchsian groups, Internat. J. Algebra Comput. 15 (2005), no. 1, 59–72.

[3] W. Burnside, On the outer automorphisms of a group, Proc. London Math. Soc. 11
(1913), 40–42.

[4] J. L. Dyer, Separating conjugates in amalgamated free products and HNN extensions,
J. Austral. Math. Soc. Ser. A 29 (1980), no. 1, 35–51.

[5] G. Endimioni, Pointwise inner automorphisms in a free nilpotent group, Q. J. Math.
53 (2002), no. 4, 397–402.

[6] E. K. Grossman, On the residual finiteness of certain mapping class groups, J. London
Math. Soc. (2) 9 (1974), 160–164.

[7] S. Jackowski and Z. Marciniak, Group automorphisms inducing the identity map on
cohomology, J. Pure Appl. Algebra 44 (1987), no. 1-3, 241–250.

[8] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Pure and Applied

Math. Vol. XIII, Wiley-Interscience, New York-London-Sydney, 1966.
[9] M. V. Neshadim, Free products of groups that do not have outer normal automorphisms,

Algebra and Logic 35 (1996), no. 5, 316–318.
[10] D. Segal, On the outer automorphism group of a polycyclic group, In Proc. of the Second

International Group Theory Conference (Bressanone, 1989), Rend. Circ. Mat. Palermo
(2) Suppl. No. 23 (1990), 265–278.

[11] G. E. Wall, Finite groups with class-preserving outer automorphisms, J. London Math.
Soc. 22 (1947), 315–320.

[12] P. C. Wong and K. B. Wong, Residual finiteness of outer automorphism groups of
certain tree products, J. Group Theory 10 (2007), no. 3, 389–400.

[13] W. Zhou and G. Kim, Class-preserving automorphisms and inner automorphisms of
certain tree products of groups, J. Algebra 341 (2011), 198–208.

Wei Zhou

School of Mathematics and Statistics
Southwest University
Chongqing 400715, P. R. China
E-mail address: zh great@swu.edu.cn

Goansu Kim
Department of Mathematics

Yeungnam University
Kyongsan 712-749, Korea
E-mail address: gskim@yu.ac.kr


