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DYNAMIC BIFURCATION OF THE PERIODIC

SWIFT-HOHENBERG EQUATION

Jongmin Han and Masoud Yari

Abstract. In this paper we study the dynamic bifurcation of the Swift-
Hohenberg equation on a periodic cell Ω = [−L,L]. It is shown that the
equations bifurcates from the trivial solution to an attractor Aλ when the
control parameter λ crosses the critical value. In the odd periodic case,
Aλ is homeomorphic to S1 and consists of eight singular points and their
connecting orbits. In the periodic case, Aλ is homeomorphic to S1, and
contains a torus and two circles which consist of singular points.

1. Introduction

Fluid motion driven by the thermal gradients is common in nature, especially
in geophysical flows such as the atmosphere, the oceans, the mantle of the earth,
and the interior of stars. A typical model for fluid convection is the Rayleigh-
Bénard convection describing a fluid placed between flat horizontal plates such
that the lower plate is maintained at a temperature above the upper plate
temperature. Due to the thermal expansion, the fluid near the lower plate
is less dense and become unstable in the gravitational field. Eventually, we
encounter an instability at a finite wave length giving a spatio-temporal pattern
formation.

The mathematical model for the Rayleigh-Bénard convection comes from
the equation of fluid dynamics in the Boussinesq approximation which involves
the Navier-Stokes equations coupled with the temperature equation. In 1977,
Swift and Hohenberg derived in [14] that when the Rayleigh number is near
the onset of the convection, the Rayleigh-Bénard convection model may be
approximated by the following Swift-Hohenberg equation (SHE)

(1.1)
∂u

∂t
= −

(

I +
∂2

∂x2

)2

u+ λu− u3, λ ∈ R.
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The SHE plays an important role in the studies of pattern formation in many
other problems [1, 2]. It has many qualitatively different stable equilibrium
solutions of which are selected as final patterns as time tends to the infinity. In
many pattern formation, pattern selections are qualitatively dependent of some
control parameters which make bifurcation phenomenon as they passes critical
numbers. In this point of view, it is an important subject to study dynamic
bifurcation of the SHE describing the instability of the trivial solution and the
corresponding pattern forming phenomena.

In this paper, we study how the primary instability occurs according to the
control parameter λ in the SHE and what is the final patterns. In particular,
we consider SHE under the periodic boundary condition

(1.2) u is periodic on Ω = [−L,L], i.e., u(−L) = u(L).

As a simpler case, we also consider the odd-periodic boundary condition

(1.3) u is periodic on Ω = [−L,L] and u(−x) = −u(x) for all x ∈ Ω.

To study the dynamic bifurcation of SHE, we use the attractor bifurcation
theory developed in [8, 9]. The main theorem of this theory says that if the
trivial solution of governing equation of the system is asymptotically stable
at the critical value λ0 of the control parameter λ, and if the first eigenvalue
of the linearized equation crosses the imaginary axis as λ passes λ0, then the
system bifurcates from the trivial solution to an attractor Aλ. The bifurcated
attractor Aλ does not contain the trivial solution and thus is different from
the global attractor. Moreover, the bifurcated attractor is stable and attracts
any bounded set in H\Γ, where H is the whole phase space and Γ is the stable
manifold of the trivial solution. This implies that Aλ is responsible for the
long time dynamics in the stability analysis. From the physical transition point
of view, as the control parameter crosses λ0, the new state after the system
undergoes a transition is represented by the whole bifurcated attractor, rather
than any of the steady states or any of the connecting orbits [7]. Unlikely to the
classical steady state bifurcation theory such as Lyapunov-Schmidt reduction,
we study the dynamic system directly in the attractor bifurcation theory and
find reduced equations on the center manifold which are essential in the study
of phase transitions. The term ‘dynamics bifurcation’ comes from this reason.

There are several results about the attractor bifurcation for phase transition
equations or the pattern formation equations including the complex Ginzburg-
Landau equations [6], the Rayleigh-Bénard convection [10], the Burger’s type
equation [5], the Kuramoto-Sivashinsky equation (KSE) [8], the Cahn-Hilliard
equation (CHE) [11]. Among them the KSE equation and the CHE are fourth
order partial differential equations as the SHE. In the point of dynamic bi-
furcation, the main difference between the SHE and these two fourth order
equations is that the eigenvalues of the linearized equation for the SHE have
multiplicities while the linearized operator of the KSE and the CHE allow only
one sequence of eigenvalues. As we shall see, this makes the final patterns of
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the SHE more fluent than those of the KSE and the CHE. For more discussion,
see Remark 2.3 below.

In the next section, we review the known results about the attractor bi-
furcation of the SHE and make a functional setting. In Section 3, we briefly
review of the attractor bifurcation theory in [8] which will be the main tool
with the center manifold theory for the proof of main result. In Sections 4 and
5, we state the main theorems about the dynamic bifurcation of the SHE and
provides their proofs.

2. Preliminaries

For the functional setting of periodic SHE, let

H = {u ∈ L2(Ω;R) : u(−L) = u(L) and

∫ L

−L

u(x)dx = 0},

H4
per(Ω;R) =

{

u ∈ H4(Ω;R) :
∂ju

∂xj
(−L) = ∂ju

∂xj
u(L) for j = 0, 1, 2, 3

}

,

H1 = H4
per(Ω;R) ∩H.

We also define for odd periodic case

H̃ = {u ∈ H : u(−x) = −u(x), x ∈ Ω},
H̃1 = H4

per(Ω;R) ∩ H̃.
We formulate (1.1) in an abstract equation

(2.1)







du

dt
= Lλu+G(u, λ),

u(0) = u0,

by setting Lλu = −Au+Bλu, and

Au =
( ∂2

∂x2
+ I
)2

: H1 → H,

Bλu = λI : H1 → H.

We also define nonlinear terms G(u) = −u3. It is easy to check that A, Bλ, G

: H1 → H (or H̃1 → H̃) are well defined.

Let us investigate the eigenvalues of the operator Lλ on H̃ . By a simple
computation, one can find that Lλ has an eigenvalue sequence

βn(λ) = λ− λn, λn =
[

1−
(nπ

L

)2]2

, n = 1, 2, . . .

with the corresponding eigenvectors φn(x) = sin(nπx/L). Since λn is a qua-
dratic function of nπ/L, there exists N ∈ N such that either

(2.2) λn > λN ∀ n 6= N,

or

(2.3) λn > λN = λN+1 ∀ n 6= N,N + 1.
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In both cases let

λ0(N) = λN = inf{λn : n ∈ N}.
This number plays a crucial role in the dynamic bifurcation in that the primary
instability of the system happens at λ0. Indeed, it was shown in [16] that
if λ ≤ λ0, then the trivial solution u = 0 is globally asymptotically stable
equilibrium point of (1.1) in H̃ and H . As λ crosses λ0, the first eigenvalue
λ − λ0 of Lλ becomes positive. As a consequence the trivial solution is no
longer stable and an attractor bifurcates from the trivial solution.

In order to investigate the bifurcated attractor, we reduce SHE on the center
manifolds for each λ near λ0. The dimension of center manifolds is equal to
the algebraic multiplicity of the first eigenvalue of Lλ which in turn depends
on the value of λN . Thus, the dimensions of center manifold at λ0 are different
from each other in the cases (2.2) and (2.3) as we shall see. We note that (2.3)
occurs when L = L0(N) for some N ∈ N, where

(2.4) L0(N) =
[ π2

2

(

N2 + (N + 1)2
) ]1/2

.

Concerning the dynamic bifurcation for SHE in the case (2.2), it was well
established in [16] that SHE bifurcate attractors as the control parameter λ
crosses a critical value λ0 when L ≤ π. With a slight modification, this result
can be extended for the general case (2.2) without assumption that L ≤ π.
Here are theorems.

Theorem 2.1. Suppose that (2.2) holds true for some N ∈ N. Then, for

the SHE (1.1) defined in H̃, the primary instability of the system happens at

λ0 = λN . Moreover,

(a) For λ > λ0, (1.1) bifurcates from (u, λ) = (0, λ0) to an attractor Aλ

which consists of exactly two steady state solutions. For λ near λ0, these solu-

tions can be expressed as

u±(x) = ±
√

4(λ− λ0)

3
sin

Nπx

L
+ o(

√

λ− λ0).

(b) For any bounded open set U ⊂ H̃ with 0 ∈ U , there exists ε > 0 such

that as λ0 < λ < λ0 + ε, Aλ attracts U\Γ in H̃, where Γ is the stable manifold

of u = 0 with codimension 1.

Theorem 2.2. Suppose that (2.2) holds true for some N ∈ N. Then, for

the SHE (1.1) defined in H, the primary instability of the system happens at

λ0 = λN . Moreover,

(a) For λ > λ0, (1.1) bifurcates from (u, λ) = (0, λ0) to an attractor Aλ

which is homeomorphic to S1. Moreover, Aλ consists of steady state solutions

and is given by

{

y1 sin
Nπ

L
x+ y2 cos

Nπ

L
x+ o(|y|) : y21 + y22 =

4

3
(λ − λ0)

}

.
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(b) For any bounded open set U ⊂ H̃ with 0 ∈ U , there exists ε > 0 such

that as λ0 < λ < λ0 + ε, Aλ attracts U\Γ in H, where Γ is the stable manifold

of u = 0 with codimension 2.

If L ≤ π, then it is easy to see that the case (2.4) does not occur and hence
(2.3) does not hold true. The purpose of this paper is to study the dynamic
bifurcation of SHE under the condition (2.3). This improves the result of [16].
In this case, algebraic multiplicity of λ0 is twice of the multiplicity in the
case (2.3). In the next section, we briefly review of the attraction bifurcation
theory developed in [8]. Using this theory, in Sections 4 and 5, we establish the
attractor bifurcation of the SHE for the case (2.3) with the odd-periodic and
the periodic boundary conditions.

Remark 2.3. The fourth order equations play important roles in the study of
pattern formation. Among them, the Kuramoto-Sivashinsky equation (KSE)
describes the fluctuations of the position of a flame front, the motion of a fluid
going down a vertical wall, or a spatially uniform oscillating chemical reaction
in a homogeneous medium [15]. The equation is written as

(2.5) ut + uxxxx + λuxx + uux = 0,

which has the form (3.1) with Lλu = −Au+Bλu and

Au = −uxxxx, Bλu = −λuxx, G(u) = −uux.
The eigenvalues of Lλ are

αn(λ) =
(nπ

L

)2{

λ−
(nπ

L

)2 }

=: τn(λ− τn).

Thus, the primary instability arises when λ crosses τ1 = π2/L2 and we cannot
expect multiplicity like (2.3). Even when we consider the case (2.2) for SHE,
the primary instability can arise at λ1 as well as at any number λN according to
the periodic length L. Thus SHE allows more phase transition phenomena than
KSE as discussed in the introduction. This observation of the dependence of the
bifurcation about SHE on L have been made by many authors. For instance,
see [3, 12, 13]. One can refer to Chapter 9 of [8] for the dynamic bifurcation
for KSE.

3. Review of the attractor bifurcation theory

In this section, we briefly review the attractor bifurcation theory developed
by Ma and Wang in [8], which is essential to state the main result of this paper.

Let H1 and H be two Hilbert spaces with a dense inclusion H1 →֒ H . Let
us consider the nonlinear evolution equation

(3.1)







du

dt
= Lλu+G(u, λ),

u(0) = u0,
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where u : [0,∞) → H is the unknown function and λ ∈ R is the system
parameter. The parameterized operator Lλ : H1 → H are linear completely
continuous fields depending continuously on λ and satisfy

(3.2)







Lλ = −A+Bλ, a sectorial operator,
A : H1 → H, a linear homeomorphism,
Bλ : H1 → H, a parameterized linear compact operator.

Then, Lλ generates an analytic semigroup {Sλ(t) = e−tLλ}t≥0 and we can
define fractional power operators Lα

λ for any 0 ≤ α ≤ 1 with domain Hα =
D(Lα

λ). Moreover, H0 = H and if α1 > α2, then Hα1
⊂ Hα2

. We assume that
G(·, λ) : Hα → H are parameterized Cr bounded operators for some 0 ≤ α < 1
and r ≥ 0, and depend continuously on λ such that

(3.3) G(u, λ) = o(‖u‖Hα
), ∀λ ∈ R.

In this paper, we are interested in the case that there exists an eigenvalue
sequence {ρk} ⊂ C and eigenvector sequence {ek, hk} ⊂ H1 of A satisfying

(3.4)































Azk = ρkzk, zk = ek + ihk,

{ek, hk} is a basis of H,

Reρk → ∞ as k → ∞,

∣

∣

∣

Imρk
b+Reρk

∣

∣

∣ ≤ C

for some constants b, C > 0. The condition (3.4) implies that A is a sectorial
operator. Hence, we can define fractional power operators Aα with domain
Hα = D(Aα) for any 0 ≤ α ≤ 1. For the compact operator Bλ : H1 → H , we
assume that there exists a constant 0 ≤ θ < 1 such that

(3.5) Bλ : Hθ → H is bounded for all λ ∈ R.

It is known that Lλ = −A+ Bλ is a sectorial operator if (3.4) and (3.5) hold.
In this case, D(Lα) = D(Aα).

Let β1(λ), . . . , βk(λ), . . . ∈ C be the eigenvalues of Lλ counting multiplicities.
Suppose that

(3.6) Reβj(λ) =







< 0, if λ < λ0
= 0, if λ = λ0
> 0, if λ > λ0

(1 ≤ j ≤ m)

and

(3.7) Reβj(λ0) < 0, ∀ j ≥ m+ 1.

We define the eigenspace of Lλ at λ0 by

E0 =
m
⋃

j=1

∞
⋃

k=1

{u ∈ H1 : (Lλ0
− βj(λ0))

ku = 0}.

Then, it is known that dimE0 = m.
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In order to state the attractor bifurcation theory we need the following
definition.

Definition. (i) A set Σ ⊂ H is a (positive) invariant set of (3.1) if Sλ(t)Σ = Σ
for any t ≥ 0.

(ii) An invariant set Σ ⊂ H of (3.1) is an attractor if Σ is compact and there
exists a neighborhood U ⊂ H of Σ such that

lim
t→∞

distH(uλ(t;u0),Σ) = 0

for any u0 ∈ U . The largest open set U satisfying the above condition is the
basin of attraction of Σ.

Definition. (i) We say that (3.1) bifurcates from (u, λ) = (0, λ0) to an in-
variant set Ωλ if there exists a sequence of invariant sets {Ωλn

} of (3.1) with
0 /∈ Ωλn

such that

lim
n→∞

max
u∈Ωλn

|u| = 0, lim
n→∞

λn = λ0.

(ii) If the invariant sets Ωλ are attractors of (3.1), then the bifurcation is
called an attractor bifurcation.

(iii) If the invariant sets Ωλ are attractors and are homotopy equivalent to
an m-dimensional sphere Sm, then the bifurcation is called an Sm-attractor

bifurcation.

The following dynamic bifurcation theorem for (3.1), which comes from The-
orem 6.1 of [8], is the main tool for the study of SHE in this paper.

Theorem 3.1 (Attractor Bifurcation Theorem). Suppose that (3.2)-(3.7) hold
true, and u = 0 is a locally asymptotically stable equilibrium point of (3.1) at

λ = λ0. Then, we have the following:
(a) The equation (3.1) bifurcates from (u, λ) = (0, λ0) to an attractor Aλ for

λ > λ0, with m− 1 ≤ dimAλ ≤ m, which is connected if m > 1.
(b) For any uλ ∈ Aλ, uλ can be expressed as

uλ = vλ + o(‖vλ‖H1
), vλ ∈ E0.

(c) If u = 0 is globally asymptotically stable for (3.1) at λ = λ0, then for

any bounded open set U ⊂ H with 0 ∈ U , there exists ε > 0 such that as

λ0 < λ < λ0 + ε, Aλ attracts U\Γ in H, where Γ is the stable manifold of

u = 0 with codimension m. In particular, if (3.1) has a global attractor for all

λ near λ0, then ε can be chosen independent of U .

To investigate the stability and bifurcation of (3.1), it is crucial to reduce it
to the center manifold. Suppose that H1 and H are decomposed into

(3.8)























H1 = Eλ
1 ⊕ Eλ

2 , H = Ẽλ
1 ⊕ Ẽλ

2 ,

Eλ
1 and Eλ

2 are invariant subspaces of Lλ,

dim Eλ
1 <∞, Eλ

1 = Ẽλ
1 ,

Ẽλ
2 is the closure of Eλ

2 in H,
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for λ near λ0. In addition, Lλ can be decomposed into Lλ = Lλ
1 ⊕Lλ

2 such that
for λ near λ0,

(3.9) Lλ
1 = Lλ|Eλ

1

: Eλ
1 → Ẽλ

1 , Lλ
2 = Lλ|Eλ

2

: Eλ
2 → Ẽλ

2 ,

where the eigenvalues of Lλ
2 possess negative real part and the eigenvalues of

Lλ
1 possess nonnegative real parts at λ = λ0. We can rewrite (3.1) as

(3.10)











dv

dt
= Lλ

1v + P1G(v + w, λ),

dw

dt
= Lλ

1w + P2G(v + w, λ),

where u = v + w ∈ H1, v ∈ Eλ
1 , w ∈ Eλ

2 , and Pj : H → Ẽλ
j are canonical

projections. We have the following Center Manifold Theorem [4].

Theorem 3.2. Assume (3.2), (3.3), (3.8) and (3.9). Let Eλ
2 (α) be the closure

of Eλ
2 in Hα, where α ∈ [0, 1) is given by (3.3). Then, there exist a neighborhood

of λ0 given by |λ− λ0| < δ for some δ > 0, a neighborhood Oλ ⊂ Eλ
1 of v = 0,

and a C1 function Φ(·, λ) : Oλ → Eλ
2 (α) such that the following hold:

(a) Φ(0, λ) = 0 and DvΦ(0, λ) = 0.
(b) The set

Mλ = {(u, v) ∈ H1 | v ∈ Oλ, w = Φ(v, λ) ∈ Eλ
2 (α)},

called the center manifold, are locally invariant for (3.1), i.e., if uλ(t, u0) is the
solution of (3.1) for u0 ∈Mλ, then there exists t(u0) > 0 such that uλ(t, u0) ∈
Mλ for all 0 ≤ t < t(u0).

(c) If (vλ(t), wλ(t)) is a solution of (3.10), then there are cλ > 0 and Kλ > 0
depending (vλ(0), wλ(0)) such that

‖wλ(t)− Φ(vλ(t), λ)‖H ≤ Kλe
−cλt.

By the Center Manifold Theorem, the equation (3.10) is reduced to

(3.11)
dv

dt
= Lλ

1v + P1G(v +Φ(v, λ), λ)

in an neighborhood of 0 in Eλ
1 .

Finally, we introduce a useful theorem when we study the structure of the
bifurcated attractor of (3.11) for the two dimensional case. We consider a two
dimensional system

(3.12)
dy

dt
= β(λ)y −G(y, λ), y ∈ R

n.

Here, β(λ) is a continuous function of λ and G(y, λ) = Gk(y, λ) + o(|y|k)
is a two dimensional vector field for some integer k = 2m + 1 ≥ 3, where
Gk(y1, . . . ,yk, λ) is a k–multiple linear function and Gk(y, λ) = Gk(y, . . . ,y,
λ). The following theorem from [8, 9] gives a criterion when the system (3.12)
bifurcates to an Sn−1-attractor.
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Theorem 3.3. Suppose that

(3.13) β(λ)











< 0 if λ < λ0,

= 0 if λ = λ0,

> 0 if λ > λ0,

and Gk(y, λ) satisfies

(3.14) C1|y|k+1 ≤ < Gk(y, λ),y >Rn ≤ C2|y|k+1

for some constants C1, C2 > 0. Then, for λ > λ0, the system (3.12) bifurcates
from (y, λ) = (0, λ0) to an attractor Aλ which is homeomorphic to Sn−1.

4. Odd periodic case

The first main result is the following involving the the attractor bifurcation
of the SHE for the case (2.3) under the odd-periodic boundary condition.

Theorem 4.1. Suppose that (2.3) holds true for some N ∈ N. Then, for

the SHE (1.1) defined in H̃, the primary instability of the system happens at

λ0 = λN . Moreover,

(a) If λ ≤ λ0, then u = 0 is globally asymptotically stable equilibrium point

of (1.1).
(b) For λ > λ0, (1.1) bifurcates from (u, λ) = (0, λ0) to an attractor Aλ with

dimAλ = 1.
(c) For any bounded open set U ⊂ H̃ with 0 ∈ U , there exists ε > 0 such

that as λ0 < λ < λ0 + ε, Aλ attracts U\Γ in H̃, where Γ is the stable manifold

of u = 0 with codimension 2.
(d) The bifurcated attractor Aλ is homeomorphic to S1 and consists of eight

singular points and their connecting orbits. For λ near λ0, the singular points

can be expressed as

u±1 (x) = ± 2

3

√

λ− λ0

{

sin
Nπx

L
+ sin

(N + 1)πx

L

}

+ o(
√

λ− λ0),

u±2 (x) = ± 2

3

√

λ− λ0

{

sin
Nπx

L
− sin

(N + 1)πx

L

}

+ o(
√

λ− λ0),

u±3 (x) = ±
√

4(λ− λ0)

3
sin

Nπx

L
+ o(

√

λ− λ0),

u±4 (x) = ±
√

4(λ− λ0)

3
sin

(N + 1)πx

L
+ o(

√

λ− λ0).

Moreover, on the center manifold u±1 , u
±
2 are saddle points and u±3 , u

±
4 are

stable nodes.
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Proof. For the existence of bifurcated attractor, we verify each condition in
Theorem 3.1. From the setting in Section 2, it is trivial to check that (3.2)-
(3.5) hold true. We note that

βN (λ) = βN+1(λ) =







< 0, if λ < λ0
= 0, if λ = λ0
> 0, if λ > λ0

and Reβn(λ0) < 0 for all n 6= N,N+1. Hence, (3.6)–(3.7) are valid. Moreover,
u = 0 is shown to be globally asymptotically stable for λ ≤ λ0 as proved in
[16]. Now, we can apply the attractor bifurcation Theorem 3.1 to obtain a
bifurcated attractor satisfying the assertions (a), (b), and (c).

It remains to prove the statement (d). First we show that Aλ is homeomor-

phic to S1. Let E1 = span{φN , φN+1} and E2 = E⊥
1 in H̃ . Let Pj : H̃ → Ej

be the canonical projections and Lλ
j = Lλ|Ej

for j = 1, 2. For u ∈ H̃ , we can

write u =
∑∞

n=1 ynφn. If Φ(·, λ) : E1 → E2 is a center manifold function and
v = P1u, then the reduced equation of (1.1) on the center manifold is

dv

dt
= Lλ

1v + P1G(yNϕN + yN+1ϕN+1 +Φ(yN , yN+1, λ)),

which is equivalent to
(4.15)


















dyN
dt

=βNyN +
1

L

〈

G
(

yNφN + yN+1φN+1 +Φ(yN , yN+1, λ)
)

, φN

〉

,

dyN+1

dt
=βN+1yN+1+

1

L

〈

G
(

yNφN+ yN+1φN+1+Φ(yN , yN+1, λ)
)

, φN+1

〉

.

Since Φ(yN , yN+1, λ) = o(|y|) with y = (yN , yN+1) and G(u) = −u3, we obtain
〈

G
(

yNφN + yN+1φN+1 +Φ(yN , yN+1, λ)
)

, φN

〉

= −
∫ L

−L

(

y3Nφ
4
N + 3y2NyN+1φ

3
NφN+1 + 3yNy

2
N+1φ

2
Nφ

2
N+1

+y3N+1φNφ
3
N+1

)

dx+ o(|y|3)

= −3L

4
(y3N + 2yNy

2
N+1) + o(|y|3).

A similar computation yields
〈

G
(

yNφN + yN+1φN+1 +Φ(yN , yN+1, λ)
)

, φN+1

〉

= −3L

4
(2y2NyN+1 + y3N+1) + o(|y|3).

Hence, the bifurcation equation (4.15) becomes

(4.16)
dy

dt
= β(λ)y − F (y) + o(|y|3),
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where β(λ) = βN (λ) and

F (y) =
3

4
(y3N + 2yNy

2
N+1, 2y

2
NyN+1 + y3N+1).

It is easy to see that

(4.17)
3

4
|y|4 ≤ 〈F (y),y〉R2 ≤ 3

2
|y|4.

Hence, we can use Theorem 3.3 to show that the bifurcated attractor Aλ is
homeomorphic to S1.

Finally, we show that Aλ consists of four minimal attractor, four saddle
points, and their connecting orbits. It is known that under nondegenerate
conditions the bifurcated equation (4.16) and its truncation

(4.18)
dy

dt
= β(λ)y − F (y) =: vλ(y)

have the same stability near (u, λ) = (0, λ0). For λ > λ0 with λ − λ0 small,
(4.18) admits eight singular points

(4.19) ± (yN , yN+1) = (αλ, αλ), (αλ,−αλ), (γλ, 0), (0, γλ),

where

αλ =
2

3

√

β, γλ =

√

4β

3
.

We note that

Dvλ(λ) =







β(λ) − 3

4
(3y2N + 2y2N+1) −3yNyN+1

−3yNyN+1 β(λ)− 3

4
(2y2N + 3y2N+1)






.

If y2N = y2N+1 = α2
λ, then

Dvλ =







−2

3
β(λ) −3yNyN+1

−3yNyN+1 −2

3
β(λ)







such that

det(Dvλ − σI) =
(

σ +
2

3
β
)2

− 9y2Ny
2
N+1 =

(

σ − 2

3
β
)(

σ + 2β
)

.

This implies that Dvλ has eigenvalues 2
3
β(λ),−2β(λ). Hence, they are nonde-

generate solutions of (4.18) and correspond to saddle points of (4.16). More-
over, these singular solutions corresponds to the steady state solutions u±1 and
u±2 of (1.1).

On the other hand, if y2N = γ2λ and yN+1 = 0, then

Dvλ =

( −2β(λ) 0

0 −β(λ)

)
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has eigenvalues −β,−2β. Thus, (yN , yN+1) = ±(γλ, 0) are nondegenerate solu-
tions of (4.18) and correspond to stable nodes of (4.16). Similarly, (yN , yN+1) =
±(0, γλ) are regular solutions of (4.18) and correspond to stable nodes of (4.16).
It is obvious that these singular solutions corresponds to the steady state so-
lutions u±3 and u±4 of (1.1). �

The following Figure 1 depicts the center manifold for λ > λ0 with λ − λ0
small.

u
−
1

u
−
3

u
−
2

u
+
4

u
+
1

u
+
3

u
+
2

u
−
4

Figure 1.

5. Periodic case

In this section, we study the dynamic bifurcation of the SHE with the peri-
odic condition (1.2). Under the periodic boundary condition (1.2), Lλ has an
eigenvalue sequence on H

β2n−1 = β2n(λ) = λ− λn, λn =
[

1−
(nπ

L

)2]2

, n = 1, 2, . . .

with the corresponding eigenvectors

ψ2n−1(x) = sin
(nπx

L

)

, ψ2n(x) = cos
(nπx

L

)

.

Theorem 5.1. Suppose that (2.3) holds true for some N ∈ N. Then, for

the SHE (1.1) defined in H, the primary instability of the system happens at

λ0 = λN = λN+1. Moreover,

(a) If λ ≤ λ0, then u = 0 is a globally asymptotically stable equilibrium point

of (1.1).
(b) For λ > λ0, (1.1) bifurcates from (u, λ) = (0, λ0) to an attractor Aλ

which is homeomorphic to S3.

(c) For any bounded open set U ⊂ H with 0 ∈ U , there exists ε > 0 such

that as λ0 < λ < λ0 + ε, Aλ attracts U\Γ in H, where Γ is the stable manifold

of u = 0 with codimension 4.
(d) The bifurcated attractor Aλ contains 2 tori and 4 circles which consist

of singular points.
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Proof. It comes from (2.3) that

βn(λ)







< 0, if λ < λ0
= 0, if λ = λ0
> 0, if λ > λ0

for n ∈ ΛN = {2N − 1, 2N, 2N +1, 2N +2}, and Reβn(λ0) < 0 for all n 6∈ ΛN .
Hence, the multiplicity of the first eigenvalue is four. Then, proceeding as in
the proof of Theorem 4.1, we obtain bifurcated attractors Aλ as λ crosses λ0
satisfying the statements (a)–(c).

We prove the statement (d). Let E1 = span{ψn : n ∈ ΛN} and E2 = E⊥
1 in

H . Let Pj : H → Ej be the canonical projections and Lλ
j = Lλ|Ej

for j = 1, 2.
For simplicity, let φi = ψ2N−2+i for i = 1, 2, 3, 4 and y = (y1, y2, y3, y4). Then,

for u ∈ H , we can write u =
∑4

i=1 yiφi + Ψ(y, λ), where Ψ : E1 → E2 is the
center manifold function. Proceeding as in the proof of Theorem 4.1, we see
that the reduced equations on the center manifold are given by

(5.20)
dyi
dt

= β(λ)yi − gi(y, λ) + o(|y|3)

for i = 1, 2, 3, 4. Here,

gi(y, λ) =
1

L

〈

G
(

y1φ1 + y2φ2 + y3φ3 + y4φ4

)

, φi

〉

.

We note that for distinct i, j, k ∈ {1, 2, 3, 4},
∫ L

−L

φ4i dx =
3

4
L,

∫ L

−L

φ3iφjdx = 0,

∫ L

−L

φ2iφjφkdx = 0,

∫ L

−L

φ1φ2φ3φ4dx = 0,

∫ L

−L

φ21φ
2
2 =

1

4
L,

∫ L

−L

φ23φ
2
4 =

1

4
L,

∫ L

−L

φ2iφ
2
j =

1

2
L for other cases.

Using these formula, we obtain that

g1(y, λ) =
3

4
y1(y

2
1 + y22 + 2y23 + 2y24),

g2(y, λ) =
3

4
y2(y

2
1 + y22 + 2y23 + 2y24),

g3(y, λ) =
3

4
y3(2y

2
1 + 2y22 + y23 + y24),

g4(y, λ) =
3

4
y4(2y

2
1 + 2y22 + y23 + y24).

If we set F = (g1, g2, g3, g4), then we have the inequality (4.17) such that the
bifurcated attractor Aλ is homeomorphic to S3 by Theorem 3.3.
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Since the subspace of odd periodic functions is invariant under Lλ+G in H ,
the system (5.20) in H̃ is equal to (4.16). This implies that we have singular
points of (5.20) given by (4.19). Since SHE is invariant in H under the spacial

translation, the steady state solution αλφ1+αλφ3+o(
√
λ− λ0) ∈ H̃ generates

singular points in H of (5.20): for θ1, θ2 ∈ R,

αλ sin
(Nπ

L
(x+ θ1)

)

+ αλ sin
( (N + 1)π

L
(x+ θ2)

)

+ o(
√

λ− λ0)

= αλ cos
Nπθ1
L

· sin Nπx
L

+ αλ sin
Nπθ1
L

· cos Nπx
L

+

αλ cos
(N + 1)πθ2

L
· sin (N + 1)πx

L
+ αλ sin

(N + 1)πθ2
L

· cos (N + 1)πx

L

+ o(
√

λ− λ0)

= y1φ1 + y2φ2 + y3φ3 + y4φ4 + o(
√

λ− λ0).

We note that

y21 + y22 = y23 + y24 = α2
λ.

This gives a set of singular points in H defined by a two-dimensional torus
{

u = y1φ1 + y2φ2 + y3φ3 + y4φ4 + o(
√

λ− λ0) : y21 + y22 = y23 + y24 = α2
λ

}

.

A similar argument can be shown to prove the existence of invariant circles.
The steady state solution (γλ, 0) in (4.19) generate the following circles in H :
for θ ∈ R,

γλ sin
(Nπ

L
(x+ θ)

)

+ o(
√

λ− λ0)

= γλ cos
Nπθ1
L

· sin Nπx
L

+ γλ sin
Nπθ1
L

· cos Nπx
L

+ o(
√

λ− λ0)

= y1φ1 + y2φ2 + o(
√

λ− λ0).

Hence we have a set of singular points in H defined by a circle
{

u = y1φ1 + y2φ2 + o(
√

λ− λ0) : y21 + y22 = γ2λ

}

.

Similarly, the singular point γλφ3 + o(
√
λ− λ0) ∈ H̃ given in (4.19) generates

the invariant circle in H
{

u = y3φ3 + y4φ4 + o(
√

λ− λ0) : y23 + y24 = γ2λ

}

.

This completes the proof. �
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