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Abstract. In this paper, we present a simple explicit type numerical method for dis-

cretizations in time for solving one dimensional Burgers’ equations. The proposed method

does not need an iteration process that may be required in most implicit methods and

have good convergence and efficiency in computational sense compared to other known

numerical methods. For evidences, several numerical demonstrations are also provided.

1. Introduction

Over the past decades, many numerical techniques have been developed for
solving Burgers’ equations because of its importance in many areas such as gas
dynamics, acoustic and turbulence phenomena, etc (see [5, 7, 25]). For ex-
ample, one may refer to the approaches based on the finite difference method
([2, 12, 16, 18, 20, 23, 27]), Galerkin method ([11, 17, 33]), finite element method
([1, 8, 10, 19, 24, 28]), spectral method ([4, 6, 26]) and cubic spline and sinc-function
methods ([1, 24, 31, 32] etc. Most of the mentioned numerical approaches are us-
ing various computational techniques in spatial discretizations to get more accurate
approximations. The main issues in developing numerical algorithms are to reduce
the computational costs and to enhance the accuracy by all possible means. These
issues usually occur from three representative aspects of Burgers’ equations such as
small viscosity, stiffness and nonlinearity.

It is well known that the small viscosity leads to a steep gradient for the so-
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lution of Burgers’ equation in the spatial domain and requires either a high order
approximation or quite small mesh length in space for a highly accurate approx-
imation. The spatial discretization may lead to a first order nonlinear system of
ordinary differential equations (ODE) in time with a large scale, which are usually
very stiff (see Section 2.1). It is known that all standard explicit type methods of
convergence order 2 and larger are not sufficient to overcome the stiffness difficulty
[14]. On the other hand, all efficient and popular implicit type methods may require
extra computations comparing to explicit methods because of the nonlinearity of
the Burgers’ equation.

In this paper, we will use the popular and very accurate pseudo-spectral method
[9, 30] for the spatial domain so that one may have a nonlinear stiff system in time.
Because of the accuracy of spacial discretizations, we may require an accurate time
approximations for solving a nonlinear stiff system in time. Hence the primary
goal of the present paper is to construct a non-standard type of an explicit method
providing a nice spatial discretization, which does not ask to solve any extra non-
linear equations required by an implicit method. The error corrected Euler method
(ECEM) with convergence order 4 for the scalar stiff initial value problem developed
by authors [22] is extended to solve a system of ODEs in this paper. To confirm the
effectiveness and convergence, the present method is compared with several known
methods. In particular, the numerical results through several test problems show
that the present method radically reduce about 50 percent of the computational
cost in the sense of function evaluations compared with the fourth-order implicit
type Runge-Kutta method based on BDF-type Chebyshev approximation [29].

The rest of paper is organized as follows. In section 2, the pseudo-spectral
method is applied to Burgers’ equations for spacial approximations which leads to
a system of ODEs in time. The stiffness ratios for the model Burgers’ equation
is also discussed. The error corrected Euler’s algorithm (ECEM) for the general
system of ODEs is presented in the section 3. Numerical tests for periodic and non-
periodic Burgers’ examples are demonstrated in section 4. Finally, the conclusion
of this work with some comments is provided in the last section.

2. Space discretizations

The target problem we consider in this paper is the one-dimensional Burgers’
problem of the form

(2.1)


∂u

∂t
+ u

∂u

∂x
= ϵ

∂2u

∂x2
, a < x < b, 0 < t ≤ tend,

u(0, x) = Q(x), a ≤ x ≤ b,

u(t, a) = q1(t), u(t, b) = q2(t), 0 < t ≤ tend,

where ϵ is the given viscosity and Q(x) and qi(t), i = 1, 2 are given initial and
boundary conditions, respectively. Note that the solution u(t, x) of (2.1) develops
shock waves when ϵ approaches to 0. For spatial discretizations of (2.1), the pseudo-
spectral approximation will be used because it is known as one of the accurate and
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popular methods among other numerical methods (see [9, 15, 21] for example). For

a positive integer N , let {xj}N+1
j=0 be the Chebyshev-Gauss-Lobatto (CGL) points

on the interval [a, b] defined by

(2.2) a = x0 < x1 < · · · < xN+1 = b, xj =
a+ b

2
+
b− a

2
cos

( jπ

N + 1

)
.

For a time t > 0, let u(t) = [u0(t), · · · , uN+1(t)]
T , where uj(t) := u(t, xj),

j = 0, 1, · · · , N+1, and let D̂ be the first-order (N+2)×(N+2) Chebyshev differen-
tiation matrix associated with the CGL points (2.2) (see [9, 15]). Then the pseudo-

spectral approximations for the partial derivatives ∂
∂xu(t, xj),

∂2

∂x2u(t, xj), · · · can be
stated as

(2.3)
∂

∂x
u(t, xj) =

(
D̂u(t)

)
j
,

∂2

∂x2
u(t, xj) =

(
D̂2u(t)

)
j
, · · · 1 ≤ j ≤ N,

where (a)j denotes the jth component of the vector a.

Define the internal vector-valued function ũ(t) using the internal nodes {xj}Nj=1
by

ũ(t) = [u(t, x1), · · · , u(t, xN )]T

and write the vector u(t) using the boundary conditions in (2.1) and the boundary-

internal nodes {xj}N+1
j=0 as

u(t) = [q1(t), u(t, x1), · · · , u(t, xN ), q2(t)]
T .

For convenience, let the notation ⌊⌊a⌉⌉ denote the vector removed the first and last
components of the column vector a and let X � Y mean the Hadamard product
of two vectors X and Y . Using these notations, we have the pseudo-spectral dis-
cretizations for spatial derivatives of (2.1) and it becomes a nonlinear system of
ODE’s involving time variable only

(2.4)


∂

∂t
ũ(t) = F(t, ũ(t)), 0 < t ≤ tend,

ũ(0) = [Q(x1), · · · , Q(xN )]T ,

where
F(t, ũ(t)) := ϵ⌊⌊D̂2u⌉⌉ − ũ� ⌊⌊D̂u⌉⌉.

Hence, we are now in a position to apply ECEM developed in [22] for time dis-
cretizations. For this purpose, consider a general nonlinear stiff system of ODEs
instead of (2.4):

(2.5)
dΦ

dt
= F(t,Φ(t)), t ∈ (t0, tend]; Φ(t0) = Φ0,

where Φ(t) = [ϕ1(t), · · · , ϕM (t)]T , F(t,Φ(t)) = [f1(t,Φ(t)), · · · , fM (t,Φ(t))]T and
Φ0 is a given initial data and F(t,Φ(t)) satisfies all the necessary requirement for
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the existence of the unique solution. Here, the notation T denotes the transpose of
a vector.

2.1. Stiffness

Before going further to introduce ECEM for (2.5), we investigate first of all how
the stiffness of the discrete system (2.4) in space is affected by the relation between
the viscosity ϵ and the number M := N of interior points. The stiffness for the sys-
tem is commonly measured by the ratio (called stiffness ratio) (see [31] for example)
max |Re(λ)|
min |Re(λ)|

, where λ are the eigenvalues of the gradient matrix ∇F(t, ũ(t)) in (2.4)

and Re(z) denotes the real part of the complex number z. To see the stiffness, we
consider the system (2.4) obtained from the Burgers’ problem (2.1) on the interval
[−1, 1] with the initial and boundary conditions

(2.6) Q(x) = − sin(πx), qi(t) = 0, i = 1, 2,

respectively. The stiffness ratios are calculated with two ways and listed in Table 1
and 2. Table 1 shows the stiffness ratio for the viscosity ϵ = 1, 10−1, 10−2, 10−3 and
the time 0.03 ≤ t ≤ 0.18 when the fixed number M = 255 of interior points are
chosen, while the results in Table 2 are obtained by increasing the number M of
interior points from 31 to 127 with the fixed viscosity ϵ = 1. The results in Table
1 and 2 show that the stiffness is fairly depending on both the viscosity ϵ and the
number M of interior points. From these results in Table 1 and 2, the problem
(2.4) becomes a highly stiff system when the viscosity ϵ is sufficiently small as other
numerical methods reveal (see [31]).

3. Time discretizations

Assume that the time domain [t0, tend] is divided with the uniform time length
τ = (tend − t0)/N such that

t0 < t1 < · · · < tN = tend, tj = t0 + jτ,

where N is a given positive integer. Assume that an approximation Yn of Φ(t) at
time t = tn is given. Consider the Euler polygon defined by

(3.1) Y(t) = Yn + (t− tn)F(tn,Yn), t ∈ [tn, tn+1].

By (2.5) and (3.1), the perturbation Ψ(t) = [ψ1(t), · · · , ψM (t)]T on [tn, tn+1] given
by

(3.2) Ψ(t) = Φ(t)−Y(t)

satisfies the following ODE:

(3.3)
d

dt
Ψ(t) = ∇F(t,Y(t))Ψ(t)+G(t)+

1

2
Ψ(t)T∇2F(t,Ξ(t))Ψ(t)T , t ∈ (tn, tn+1),
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Table 1: The stiffness ratio of the nonlinear system of ODEs (2.4) with the
fixed number M = 255 of interior points
HHHHHϵ

t
0.03 0.06 0.09 0.12 0.15 0.18

1.e-3 3.68e+10 8.29e+09 6.44e+10 3.58e+10 1.94e+10 6.23e+10
1.e-2 1.38e+11 3.48e+11 7.86e+12 1.07e+11 2.75e+11 7.01e+11
1.e-1 6.47e+10 5.85e+09 4.59e+09 4.41e+09 3.50e+09 2.83e+09
1.e-0 1.13e+08 1.04e+08 9.80e+07 9.33e+07 9.06e+07 8.84e+07

Table 2: The stiffness ratio of the nonlinear system of ODEs (2.4) with the
fixed viscosity ϵ = 1
HHHHHM

t
0.03 0.06 0.09 0.12 0.15 0.18

31 2.78e+04 2.55e+04 2.40e+04 2.30e+04 2.22e+04 2.17e+04
63 4.42e+05 4.07e+05 3.83e+05 3.66e+05 3.54e+05 3.46e+05
127 7.07e+06 6.51e+06 6.12e+06 5.85e+06 5.66e+06 5.53e+06

where Ξ(t) is a function between Y(t) and Φ(t), ∇F(t,Y(t)) and ∇2F(t,Y(t))
are the gradient and Hessian matrices of F, respectively and the vector G(t) =
[g1(t), g2(t), · · · , gM (t)]T is given by

(3.4) G(t) = F(t,Y(t))− F(tn,Yn).

By the change of variable t = ts = tn + τ
2 (1 + s) from the computational region

[tn, tn+1] to the reference domain [−1, 1], one may have a system of asymptotically
first-order linear ODE’s in the reference domain [−1, 1] instead of (3.3) as follows:

(3.5)
d

ds
Ψ̄(s) =

τ

2

(
∇F(ts,Y(ts))Ψ̄(s) + G(ts)

)
+O

(
τ∥Ψ̄(s)∥2

)
, s ∈ [−1, 1],

where Ψ̄(s) :=
[
ψ̄1(s), · · · , ψ̄M (s)

]T
with ψ̄i(s) := ψi(t) = ψi(ts) and ∥·∥ is a vector

norm.
We note that one way to avoid the calculation of the gradient matrix∇F(t,Y(t))

in (3.3) is to replace each component of ∇F(t,Y(t)) with its forward difference
quotient

∂fi
∂yj

(t,Y(t)) ≈ fi(t,Y(t) + λej)− fi(t,Y(t))

λ
, i, j = 1, · · · ,M,

where ej is the jth column of the identity matrix of order M and λ is a sufficiently
small positive number. In such a replacement, the asymptotic part in (3.5) will

become O
(
τ∥Ψ̄(s)∥2+λ∥Ψ̄(s)∥

)
. Then, in any case using either the gradient or its
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approximation by forward difference scheme, we can rewrite the asymptotic system
(3.5) in one form without the error term as follows:

(3.6)
d

ds
Ψ̄(s) =

τ

2

(
K(s)Ψ̄(s) + G(ts)

)
,

where the matrix K(s) :=
(
φij(s)

)
is defined by either

φij(s) =
∂

∂yj
fi(ts,Y(ts)),

or

φij(s) =
fi(t,Y(t) + λej)− fi(t,Y(t))

λ
.

Remark 3.1. Recalling that the Euler method has the local truncation error
O(τ2), one can guess the deleted error term in (3.6) may be quite small and can be
ignored. In fact, one may prove that the error is O(τ5) provided λ = O(τ2) (see
[22]). It is remarkable that once the error term is disregarded, the system (3.6) will
be completely linear and its approximation scheme becomes an explicit type.

For an approximation of (3.6), the Chebyshev-collocation method (CCM) will
be used because it is known that CCM have a good stability for the stiff system

(2.5) (see [22, 29]). Let
{
sj := − cos πj

4

}4

j=0
be the CGL points in [−1, 1] and let{

lk(s)
}4

k=0
be the fourth-order interpolation polynomials defined by

(3.7) lk(s) =
αk

4

4∑′′

j=0

Tj(sk)Tj(s), αk =

{
1, k = 0, 4,

2, otherwise,

where Tj(s) = cos(j cos−1 s) is the first kind Chebyshev polynomial of degree j and
the double prime indicates that both the first and last terms in the summation are
to be halved. Then, each component ψ̄i(s) of the solution Ψ̄(s) of (3.6) can be
approximated by

(3.8) ψ̄i(s) ≈
4∑

k=0

ψ̄i(sk)lk(s), i = 1, · · · ,M,

whose error has the asymptotic behavior O(τ5) if ψi(t) is fifth-times continuously
differential function [22]. By substituting (3.8) into (3.6), one may approximate the
equations (3.6) with
(3.9)

4∑
k=1

(
ψ̄i(sk)l̇k(s)−

τ

2

M∑
j=1

φij(s)ψ̄j(sk)lk(s)
)
=
τ

2

( M∑
j=1

φij(s)ψ̄j(s0)l0(s) + gi(ts)
)

− ψ̄i(s0)l̇0(s), i = 1, · · · ,M,
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where l̇k(s) denotes the derivative of lk(s). To determine 4M unknown coefficients
ψ̄i(sk), i = 1, · · · ,M, k = 1, · · · , 4, we collocate the equations (3.9) at the points
sν , ν = 1, · · · , 4. Then, by the facts lk(sν) = δkν , where δkν denotes the Kronecker
delta function, one may have the discrete system

(3.10)
4∑

k=1

ψ̄i(sk)l̇k(sν)−
τ

2

M∑
j=1

φij(sν)ψ̄j(sν) =
τ

2
gi(tsν )− ψ̄i(s0)l̇0(sν),

where i = 1, · · · ,M, ν = 1, · · · , 4. Note that ψ̄i(s0) is the ith component of the
perturbation Φ(tn) − Yn, which are also unknown. However, they are quite small
and can be neglected provided Yn is an accurate approximation of Φ(tn). Hence,
truncating the last term ψ̄i(s0)l̇0(sν) in (3.10) gives a fully discrete linear system
as follows: for i = 1, · · · ,M, ν = 1, · · · , 4,

(3.11)

4∑
k=1

ψ̄i(sk)l̇k(sν)−
τ

2

M∑
j=1

φij(sν)ψ̄j(sν) =
τ

2
gi(tsν ),

with 4M equations and 4M unknowns ψ̄i(sk). In order to rewrite (3.11) in a matrix
form, for 1 ≤ j, k ≤ 4, let
(3.12)

L =
(
Ljk := l̇k(sj)

)
4×4

, J(µ,ν) =
(
J
(µ,ν)
jk := φµν(sj)δjk

)
4×4

, 1 ≤ µ, ν ≤M

and

(3.13)
c =

[
ψ̄1(s1) · · · ψ̄1(s4), ψ̄2(s1) · · · ψ̄M (s4)

]T
,

g =
[
g1(ts1), · · · , g1(ts4), g2(ts1), · · · , gM (ts4)

]T
.

Using L and J(µ,ν) in (3.12), we define matrices L̂ and Ĵ by

L̂ = I⊗ L and Ĵ =


J(1,1) J(1,2) · · · J(1,M)

J(2,1) J(2,2) · · · J(2,M)

...
...

. . .
...

J(M,1) J(M,2) · · · J(M,M)

 ,
where I⊗ L denotes the tensor product of I and L and I denotes an M ×M identity
matrix.

Lemma 3.1. In matrix terminology, (3.11) can be expressed as

(3.14)
(
L̂− τ

2
Ĵ
)
c =

τ

2
g.

Moreover, for a sufficiently small τ , it has a unique solution if the gradient matrix
∇F(t,Φ(t)) is uniformly bounded.
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Proof. The representation comes from a straightforward calculation. Note that
the matrix Ĵ is uniformly bounded whenever the gradient matrix ∇F(t,Φ(t)) is
uniformly bounded and the invertibility of L (see [22]) leads to the invertibility of

L̂. Hence for sufficiently small τ the linear system (3.14) has a unique solution. 2

Note that each ψ̄i(s4) is an approximation of the ith component of the vector
Φ(tn+1) − Y(tn+1). Thus if we define c(4) := [ψ̄1(s4), ψ̄2(s4), · · · , ψ̄M (s4)]

T from
the solution c of (3.14), then one can see

Φ(tn+1) ≈ Y(tn+1) + c(4) = Yn + τF(tn,Yn) + c(4).

Hence it is naturally to define the approximation Yn+1 of Φ(tn+1) as follows:

(3.15)

{
Yn+1 = Yn + τF(tn,Yn) + c(4), n ≥ 0,

Y0 = Φ0.

Remark that the scheme (3.15) is identically same with the Euler method if we
disregard the term c(4) in the recurrence relation (3.15). The term c(4) serves as
a correction for the error in the Euler method. In this view, we prefer to say the
approximation scheme (3.15) as an error corrected Euler method (ECEM).

Theorem 3.2. The scheme (3.15) has a local truncation error O(τ5) and hence
has a fourth-order convergence rate.

Proof. First note that the error term has the behavior O(τ5) (see Remark 3.1) and
truncation error for the fourth-order Chebyshev interpolation polynomial has O(τ5)
(see (3.8)). Then, following the proof in [22] for the scalar stiff problem line by line,
one may have the conclusion. 2

4. Numerical experiments

In this section, throughout several numerical experiments of Burgers’ equations
we will provide numerical evidences on the effectiveness and accuracy of the de-
veloped ECEM. These aims will be done by comparing ECEM to other numerical
approaches based on the finite difference method [16, 23], finite element method [28],
cubic spline and sinc-function methods [31, 32], and the fourth-order Runge-Kutta
method [21] (RK4) and the BDF-type Chebyshev approximation based fourth-order
implicit Runge-Kutta method [29] (CCM). The numerical errors are measured by
the following maximum and l2 norms

E1(t, τ) := max
1≤j≤M

|u(t, xj)− uj(t)|, E2(t, τ) :=
( M∑
j=1

(u(t, xj)− uj(t))
2
)1/2

,

where u(t, xj) represents the exact solution to (2.1) and uj(t) represents its approx-
imation at space xj and time t. The convergence rate will be measured by

rate :=
log(Ei(t, τ1)/(Ei(t, τ2))

log(τ1/τ2)
, i = 1, 2,
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where τ1 and τ2 are time lengths.
Before going further numerical demonstrations, it will be explained the reason

why we prefer the integral form in [4] to an infinite series form in [31] for the exact
solution given in the following example.

Example 4.1. Consider the Burgers’ problem (2.1) with the initial and boundary
conditions in (2.6).

The solution of the Burgers equation of Example 4.1 can be written as either
(4.1)

u(t, x) = −

∫ +∞

−∞
sin

(
π(x−

√
4ϵtξ)

)
exp

(− cos(π(x−
√
4ϵtξ))

2ϵπ

)
exp(−ξ2)dξ∫ +∞

−∞
exp

(− cos(π(x−
√
4ϵtξ))

2ϵπ

)
exp(−ξ2)dξ

,

where an = (−1)nIn(1/(2πϵ)) and In(z) denotes the modified Bessel function of the
first kind or

(4.2) u(t, x) =

4πϵ
∞∑

n=1
nan exp(−n2π2ϵt) sin(nπx)

a0 + 2
∞∑

n=1
an exp(−n2π2ϵt) cos(nπx)

.

The numerical calculation will be done by the Gauss-Hermite integration with
200 nodes for the integral form (4.1) and the buildin function besseli in Matlab
and by the 200 finite sum for the approximation of the infinite series form (4.2).
According to the numerical results in Fig. 1 with two viscosities ϵ = 0.01 and
ϵ = 0.003, both expressions (4.1) and (4.2) are very good for the relatively large
viscosity ϵ = 0.01 but for the small viscosity ϵ = 0.003 the integral form (4.1) is
better than the series form (4.2). Hence, we will use the integral form (4.1) for the
numerical comparisons.

To show the effectiveness of ECEM, we will compare it with two time stepping
approaches CCM [29] and RK4 [21], where both methods used the same spatial dis-
cretization with ECEM, while CCM [29] and RK4 [21] used a fourth-order implicit
type Runge-Kutta method based on BDF-type Chebyshev approximation and the
fourth-order explicit method, respectively for the time discretization. The numeri-
cal approximations by RK4 with viscosity ϵ = 0.01 are reported in Table 3 at time
t = 0.3 when M = 31 or M = 63, where ∞ means the undefined numerical re-
sult. The results show that RK4 gives unsatisfactory results because of the stiffness
for the problem. In particular, the time length τ ≤ 3 × 10−7 must be chosen to
get a numerical solution within the maximum error E1(0.3, τ) = 1.51× 10−9 when
M = 255 and ϵ = 0.01. It means RK4 requires much more computational costs
than ECEM does (see Table 4).

For the discussions on numerical computations shown in Table 4 and 5, we will
take M = 511 for ϵ = 0.003 and M = 255 for ϵ = 0.01. In both cases, the time
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Table 3: The errors and convergence rates by RK4 with different time length
τ at t = 0.3 for Example 4.1 with the viscosity ϵ = 0.01.

M=31 [21] M=63 [21]

τ E1(t, τ) rate E2(t, τ) rate feval E1(t, τ) rate E2(t, τ) rate feval
0.3
10

∞ ∞ 40 ∞ ∞ 40
0.3
20

∞ ∞ 80 ∞ ∞ 80
0.3
40

8.00e-1 1.32e-0 160 ∞ ∞ 160
0.3
80

2.61e-2 4.94 4.69e-2 4.81 320 ∞ ∞ 320

Table 4: Comparisons between ECEM and CCM [29] at t = 0.3 for Exam-
ple 4.1 with ϵ = 0.01,M = 255.

ECEM CCM [29]

τ E1(t, τ) rate E2(t, τ) rate feval E1(t, τ) rate E2(t, τ) rate feval
0.3
10

7.86e-6 2.80e-5 30 6.09e-7 1.96e-6 70
0.3
20

4.32e-7 4.19 1.59e-6 4.14 60 4.12e-8 3.89 1.31e-7 3.90 128
0.3
40

2.48e-8 4.12 9.54e-8 4.06 120 4.11e-9 3.33 1.08e-8 3.60 244
0.3
80

2.80e-9 3.14 8.89e-9 3.42 240 1.64e-9 1.33 6.76e-9 0.68 466

Table 5: Comparisons between ECEM and CCM [29] at t = 0.3 for Exam-
ple 4.1 for ϵ = 0.003,M = 511.

ECEM CCM [29]

τ E1(t, τ) rate E2(t, τ) rate feval E1(t, τ) rate E2(t, τ) rate feval
0.3
10

1.41e-4 3.88e-4 30 4.16e-6 1.18e-5 70
0.3
20

9.25e-6 3.93 2.35e-5 4.05 60 3.49e-7 3.58 9.24e-7 3.67 130
0.3
40

5.59e-7 4.05 1.38e-6 4.09 120 2.30e-8 3.92 6.77e-8 3.77 250
0.3
80

3.42e-8 4.03 8.47e-8 4.03 240 5.06e-9 2.18 1.94e-8 1.80 484
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Figure 1: Comparison of two expressions of the exact solution for Exam-
ple 4.1, at time t = 0.3 with fixed ϵ = 0.01(left) and ϵ = 0.003(right),
respectively.

length is given by τ = 0.3
2k×10

, k = 0, 1, 2, 3. The column feval denotes the number
of function evaluations for the vector function F(t,Y(t)). The stopping criterion for
the Newton iteration needed in CCM [29] is taken as the maximum norm of residual
less than τ4 to get the fourth-order convergence. The numerical results show that
ECEM has a convergence order 4 and the behaviors of errors Ei(t, τ), i = 1, 2 for
both ECEM and CCM look like similar. However, ECEM reduces about one-half of
computational costs in the sense of function evaluations (feval) comparing to CCM.

Also, the results of Table 4 show that ECEM is more efficient than LRAM [31],
where for the spatial and time discretization, LRAM used the differential quadrature
method using sinc-function and the linearized and rational Pade approximation for
the matrix exponential, respectively, which require a similar computational costs
with the present method for the same number of spatial points. In fact, to get the
numerical approximation having the maximum error 4.43e-4 at time t = 0.3 with
ϵ = 0.01, LRAM is required the time length τ = 0.003 and the number M = 500 of
interior points, which is costly compared with ECEM.

Fig. 2 shows the numerical solutions at different times for ϵ = 10−2, 3 × 10−3.
For the viscosity ϵ = 0.01 we take M = 127 and τ = 0.1 and we take M = 255 and
τ = 0.01 for the viscosity ϵ = 0.003. The numerical solutions with small viscosities
ranged from ϵ = 10−3 to ϵ = 10−8 for M = 127 and τ = 0.1 are provided in Fig. 3.

Example 4.2. Consider Burgers’ equation (2.1) with the initial condition Q(x) =
4x(1 − x) over domain [0, 1] and zero boundary conditions qi(t) = 0, i = 1, 2. The
viscosity constants are chosen either ϵ = 1 or ϵ = 0.01.

For the case ϵ = 1, ECEM is compared to the known numerical results obtained
from the finite difference and element methods ([16] and [28]) in Table 6. For
discussions on three methods in the sense of time step τ and number of interior
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Table 6: Comparisons of Example 4.2 at different times for ϵ = 1.

x t Hassanien [16] Öziş [28] ECEM+PS Exact Solution
M = 79 M = 11

τ = 0.001 τ = 0.00001 τ = 0.01
0.25 0.10 0.26148 0.26245 0.26148 0.26148

0.15 0.16148 0.16157 0.16148 0.16148
0.20 0.09947 0.09948 0.09947 0.09947
0.25 0.06109 0.06111 0.06109 0.06108

0.50 0.10 0.38342 0.38314 0.38342 0.38342
0.15 0.23405 0.23394 0.23406 0.23406
0.20 0.14289 0.14287 0.14289 0.14289
0.25 0.08723 0.08729 0.08723 0.08723

0.75 0.10 0.28157 0.28004 0.28157 0.28157
0.15 0.16974 0.16948 0.16974 0.16974
0.20 0.10265 0.10261 0.10266 0.10266
0.25 0.06229 0.06230 0.06229 0.06229

Table 7: Comparisons of Example 4.2 at different times for ϵ = 0.01.

x t Kutluay[23] Kutluay [23] ECEM+PS Exact Solution
M = 79 M = 36

τ = 0.001 τ = 0.001 τ = 0.01
0.25 0.4 0.36296 0.36185 0.36226 0.36226

0.6 0.28217 0.28193 0.28204 0.28204
0.8 0.23043 0.23046 0.23045 0.23045
1.0 0.19463 0.19474 0.19469 0.19469
3.0 0.07611 0.07617 0.07613 0.07613

0.50 0.4 0.69591 0.67851 0.68368 0.68368
0.6 0.55351 0.54508 0.54831 0.54832
0.8 0.45625 0.45176 0.45371 0.45371
1.0 0.38705 0.38446 0.38568 0.38568
3.0 0.15220 0.15215 0.15218 0.15218

0.75 0.4 0.95925 0.91169 0.92050 0.92050
0.6 0.80197 0.77402 0.78298 0.78299
0.8 0.67267 0.56617 0.66272 0.66272
1.0 0.57501 0.56478 0.56932 0.56932
3.0 0.22796 0.22746 0.22774 0.22774
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Figure 2: Numerical solutions for Example 4.1, at different times with vis-
cosity ϵ=1e-2, M = 127,τ = 0.1 and ϵ=3e-3 M = 255, τ = 0.01.

Table 8: Comparisons of Example 4.2 at different times for ϵ = 0.01.

Euler+BS [32] RK4+BS ECEM+BS ECEM+PS

M = 79 M = 19

t E1(t,
1

104
) cpu E1(t,

5
103

) cpu E1(t,
4

102
) cpu E1(t,

1
10
) cpu

0.4 5.75e-3 0.66 5.58e-3 0.56 5.49e-3 0.64 4.60e-3 0.17
0.6 1.21e-2 0.73 1.20e-2 0.57 1.21e-2 0.68 8.48e-3 0.18
0.8 8.06e-3 0.80 8.05e-3 0.57 8.05e-3 0.74 5.06e-3 0.18
1.0 4.72e-3 0.88 4.74e-3 0.57 4.74e-3 0.78 2.66e-3 0.18
3.0 1.59e-4 1.53 1.80e-4 0.64 1.81e-4 1.16 1.47e-4 0.22

Table 9: Comparisons of Example 4.2 at time 0.6 for ϵ = 0.01.

RK4+PS [21] ECEM+PS
M τ E1(0.6, τ) cpu τ E1(0.6, τ) cpu
19 0.0025 7.70e-3 0.17 0.05 7.70e-3 0.18
24 0.0025 7.64e-4 0.22 0.02 7.65e-4 0.26
39 0.0005 1.11e-5 0.39 0.02 1.04e-5 0.51
79 0.000025 3.56e-6 3.92 0.01 3.56e-6 1.92
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Figure 3: Numerical solutions for Example 4.1, at different times with small
viscosity numbers when M = 127, τ = 0.1.
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pointsM , we measure them under similar errors at the same time and space points.
ECEM needs τ = 0.01 and M = 11 but [16] and [28] require M = 79, τ = 0.001
and M = 79, τ = 0.00001 respectively. Even if ECEM uses the pseudo-spectral
method for the space direction, it is remarkable phenomenon that ECEM works
very well for the large time length τ = 0.01 compared with τ = 0.001, 0.00001 for
methods in [16] and [28]. One may see similar phenomena in table 7 for ϵ = 0.01
in which ECEM with pseudo-spectral method (ECEM+PS) is compared with the
numerical results by finite difference in [23]. As one may guess, ECEM+PS yields
more accurate solutions.

Table 8 explains both advantage and disadvantage about ECEM with the mod-
ified B-spline approximation and the pseudo-spectral approximation for the spatial
discretization. For the B-spline approximation (BS), the required cpu time to get
the similar maximum error for three time discretizations, Euler method ([32]), RK4
and ECEM are measured at different times. Even if ECEM and RK4 are fourth
order convergence in time, ECEM allows much larger time step τ = 0.04 than
τ = 0.005 while RK4+BS spends less cpu time than ECEM+BS does for the same
accuracy under ϵ = 0.001 and M = 79. The numerical results show that the
combination ECEM+PS is much better than other combinations in the sense of
the computational time (cpu-time) required in obtaining a similar maximum error.
One may see similar phenomena in table 9 for ϵ = 0.01 at time t = 0.6 in which
ECEM with pseudo-spectral method (ECEM+PS) is compared with the numerical
results by RK4 with pseudo-spectral method (RK4+PS) in [21]. As one may guess,
ECEM+PS requires less computational time to get an accurate solutions.

Example 4.3. Consider the Burgers’ equation (2.1) on the interval (0, 1) with the
non-periodic solution [3]

(4.3) u(t, x) =

3∑
k=1

2σk exp
(−σk(x− ηk − σkt

)
ϵ

)
3∑

k=1

exp
(−σk(x− ηk − σkt)

ϵ

) ,

where σ1 = 0.05, σ2 = 0.25, σ3 = 0.5 and η1 = η2 = η3 = 0.5, for which the initial
and boundary conditions are prescribed on all boundaries and the initial according
to (4.3).

For this example, two errors E1(t, τ) and E2(t, τ) are reported in Table 10.
These errors from t = 0.2 to t = 1.0 seem to be bounded by O(10−11) or increased
slightly when the fixed time length τ = 0.1 and M = 15 are used for a slightly large
viscosity ϵ = 0.1. One may need to investigate such error behaviors for a long time.
According to Table 11, when the total number of points M is increased from 15
to 255 for the fixed time length τ = 0.1, two errors are decreasing from O(10−3)
to O(10−12) or O(10−11) at the time t = 1 for the case ϵ = 0.01. These situation
can be explained with the property of pseudo-spectral discretizations for the space
direction.
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Table 10: Two error norms by ECEM at different times for Example 4.3
when ϵ = 0.1, τ = 0.1,M = 15.

t 0.2 0.4 0.6 0.8 1.0
E1(t, τ) 1.83e-011 5.84e-011 3.67e-011 2.99e-011 3.21e-011
E2(t, τ) 4.43e-011 1.24e-010 7.20e-011 5.75e-011 6.05e-011

Table 11: Two error norms by ECEM at time t = 1 for Example 4.3 when
ϵ = 0.01, τ = 0.1.

M 15 33 63 127 255
E1(t, τ) 6.49e-003 3.32e-005 2.74e-009 6.87e-012 6.55e-012
E2(t, τ) 9.03e-003 8.46e-005 8.67e-009 1.87e-011 2.51e-011

Example 4.4[9, p. 119]. Consider the Burgers’ equation (2.1) with ϵ = 0.01 on
the interval (−1, 1) with the non-periodic solution

(4.4) u(t, x) = 1 + ub(t+ 1, x− t)

obtained by the Hopf-Cole transformation [13] ub(t, x) = −2ϵϕx/ϕ, where ϕ(t, x) is
given by

ϕ(t, x) = 1 +

√
16

t
exp(− x2

4ϵt
).

Two errors E1(t, τ) and E2(t, τ) at time t = 1 by ECEM and CCM [29] are
displayed in Fig. 4. The left of Fig. 4 is obtained with M = 127 and the several
time lengths from 2−4 to 2−11. On the other hand, the right of Fig. 4 is obtained
for the time length τ = 0.001 and several numbers M from 24 − 1 to 28 − 1. Two
figures in Fig. 4 show that both methods ECEM and CCM have similar convergence
properties.

In Fig. 5, we compare the computational efficiencies of ECEM and CCM in
terms of cpu time and feval for M = 127 and τ from 2−4 to 2−11. The figures show
that ECEM is superior to CCM because CCM requires Newton iteration process
at each time step to solve the nonlinear system of ODEs (2.5), while ECEM needs
only solving one linear system for whole process.

5. Conclusion

A new time stepping method called the error corrected Euler method (ECEM)
for solving Burgers’ equations is developed using the pseudo-spectral method for the
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Figure 4: Computed two errors, E1(t, τ) and E2(t, τ), at time t = 1 for
Example 4.4.
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and CCM4 [29] with variable τ and fixed M = 127 for Example 4.5.
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spatial discretization and ECEM for the time space. Throughout several numerical
simulations, it is shown that the present method not only gives a good convergence
behavior but also avoids unnecessary Newton iterations for the nonlinear system.
Also, it is shown that the proposed method has a good numerical performance
compared with other existing methods for several test problems. In particular, the
present method radically reduce about one-half of the computational costs com-
pared with existing implicit type methods. An interest remaining challenges in the
proposed method is to develop a way to control the time step length to reduce the
computational cost. In a forthcoming work, we deal with these topics with some
applications to several other time dependent partial differential equations including
two-dimensional Burgers’ equations.
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