DOI QR코드

DOI QR Code

Growth and Yield of Rice in Levels of Nitrogen and Water Management of Reclaimed Saline Soil in Southwestern Area

서남부간척지에서 벼 질소시비와 물관리 방법별 생육 및 수량

  • Kim, Young-Doo (Department of Rice and winter Cereal Crop, NICS, RDA) ;
  • Choi, Min-Kyu (Department of Rice and winter Cereal Crop, NICS, RDA) ;
  • Lee, Kyung-Do (Department of Rice and winter Cereal Crop, NICS, RDA) ;
  • Baek, Man-Gee (Department of Rice and winter Cereal Crop, NICS, RDA) ;
  • Ku, Bon-Il (Department of Rice and winter Cereal Crop, NICS, RDA) ;
  • Kang, Shin-Gu (Department of Rice and winter Cereal Crop, NICS, RDA) ;
  • Park, Hong-Kyu (Department of Rice and winter Cereal Crop, NICS, RDA) ;
  • Kim, Bo-Kyong (Department of Rice and winter Cereal Crop, NICS, RDA)
  • Received : 2012.01.02
  • Accepted : 2012.08.31
  • Published : 2012.09.30

Abstract

Field experiment was carried out to identify the proper water exchange interval for the rice cultivation on reclaimed saline soil with different nitrogen levels in southwestern area. The nitrogen fertilizer was applied 14, 17 and 20 kg per 10a by ingredient, and intervals of water exchange treated 3, 6 and 9-day periods from transplanting of rice(Oryza sativa var. Cheongho) to maturing stage in Munpo soil series. The salinity levels ranged 0.10~0.24% and 0.24~0.32% of 3-day and 6-day respectively, whileas it ranged 0.35~0.52% for 9-day interval of water exchange during vegetative stage. Water exchange and nitrogen level showed significant effects on the plant growth, yield, and quality. The yield of milled rice on 3-day and 6-day interval of water exchange showed 497 kg/10a and 492 kg/10a and that were significantly higher than that of 9-day interval in 2008 and 2009. Milled rice yield of 9-day interval of water exchange was lower than that of 3-day and 6-day interval of all nitrogen levels. Plant growth and yield components were not significantly different between 3-day and 6-day interval of water exchange of all nitrogen levels. The combination of nitrogen fertilizer level of 17 kg/10a and 6-day interval of water exchange after transplanting might be recommended for maximum yield realization and minimize salt injury at reclaimed medium saline soil in southwestern area.

서남부간척지에서 벼 재배시 질소시비량 절감을 위한 물관리방법을 구명하기 위하여 세사양토(문포통, 염농도 0.3% 내외)에서 청호벼를 공시하여 시험한 결과를 요약하면 다음과 같다. 토양염농도 변화는 이앙후 3일과 6일 간격 환수에서 활착기에 각각 0.10~0.24%, 0.24~0.32%로 경과되었으나, 9일 간격 환수에서는 0.36~0.52%로 경과되었고 그 이후 영화분화기 까지도 활착기와 같은 염분농도로 경과하였다. 생육 및 수량구성요소는 환수간격 3일과 6일에서는 환수간격과 질소시비량별 차이가 크지 않았으나 환수간격 9일에서는 질소시비량에 관계없이 생육이 저조하였으며 또한 백미품위 및 미질 특성변화는 환수간격보다는 질소시비량간 차이가 컸다. 쌀 수량은 환수간격 3일과 6일에서 각각 평균 497, 492 kg/10a로 질소시비량별 환수간격에 따른 통계적 유의성이 인정되지 않았으나 환수간격 9일에서는 질소시비량에 관계없이 수량이 현저히 감소하였다. 따라서 환수간격과 질소시비량에 따른 쌀 수량, 미질과 염해 등을 고려해 볼때 이앙 후 6일 간격 환수와 질소시비량 17 kg/10a로 시용해도 생육 및 수량에 큰 차이를 보여주지 않아 생산비 절감 및 물 절약 측면에서 적당하다고 생각된다.

Keywords

References

  1. Back, N. H., W. Y. Choi, J. C. Ko, J. K. Nam, H. K. Park, J. I. Choung, S. S. Kim, and K. G. Park. 2005. Proper nitrogen fertilizer level for improving the rice quality at reclaimed saline land in the southwestern area. Korean J. Crop Sci. 50(S) : 46-50.
  2. Bhuiyan, S. I., M. A., Satter, and M. A. K., Khan. 1995. Improving water use efficiency, in rice through wet seeding. Irrigation Sci. 16, 1-8.
  3. Choi, W. Y., K. S. Lee, J. C. Ko, S. H. Kim, and T. S. Kim. 2003. Changes od rice growth and yield compoents by salinized at panicle formation stage on a reclaimed saline soil. Korean J. Intl. Agri. rop 15(3) : 225-229.
  4. De Datta, S. K. 1981. Principles and Practices of Rice Production. IRRI, Los Banos, Philippines. p. 618.
  5. De Datta, S. K., W. P., Abilay, and G. N., Kalwar. 1973. Water stress effects in flooded tropical rice. In Water management in Philippine irrigation systems: research and operations (pp. 19-36). IRRI, Los Banos, Philippines.
  6. Honam Agricultural Experiment Station(HAES). 1997. Annual Research Report. (Gyehwado substation). pp. 623-634.
  7. Hukkeri, S. B. and A. K., Sharma. 1980. Water-use efficiency of transplanted and direct-sown rice under different water management practices. Indian J. Agric. Sci. 50, 240-243.
  8. Kang, Y. S., J. H. Lee, J. I. Kim, and J. S. Lee. 1997. Influence of Silicate Application on Rice Grain Quality. Korean J. Crop Sci. 42(6) : 800-804.
  9. Kim, C. K., C. Y. Kim, J. I. Lee, J. C. Shin, and M. H. Lee. 1998. Effect of transplanting dates and nitrogen fertilizer levels on the dry matter production and yields of a pigmented rice "Heugjinjubyeo". RDA. J. Agro-Envir. Sci 40(2) : 48-55.
  10. Lee, C. K., Y. H. Yoon, J. C. Shin, B. W. Lee, and C. K. Kim. 2002. Growth and yield of rice as affected by saline water treatment at different growth stages. Korean J. Crop Sci. 47(6) : 402-408.
  11. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF). 2002. Major Statistics of Food, Agriculture, Forestry and Fisheries. p.474.
  12. Munns, R. and A. Tremaat. 1986. Whole-plant responses to salinity. Aust. J. Plant Physiol. 13 : 143-160 https://doi.org/10.1071/PP9860143
  13. Pearson, G. A. and L. Bernstein. 1959. Salinity effects at several growth stage of rice. Agron. Jour. 51 : 654-657. https://doi.org/10.2134/agronj1959.00021962005100110007x
  14. Rural Development Administration(RDA). 2003. Agricultural Research Standard. p.838.
  15. Son, S. H. and S. O. Chung. 2002. Effects of ponding depth treatment on water balance in paddy fields. J. Korean Soc. Agri. Engineers. 44(2) 67-74.

Cited by

  1. 전북지역 간척지에서 최고품질 벼 품종의 작물학적·이화학적 특성 비교 및 선발 vol.63, pp.3, 2012, https://doi.org/10.7740/kjcs.2018.63.3.196
  2. Land-use management for sustainable rice production and carbon sequestration in reclaimed coastal tideland soils of South Korea: a review vol.66, pp.1, 2020, https://doi.org/10.1080/00380768.2019.1674121
  3. Screening for a Novel Gene, OsPSLSq6, Using QTL Analysis for Lodging Resistance in Rice vol.11, pp.2, 2012, https://doi.org/10.3390/agronomy11020334