DOI QR코드

DOI QR Code

Molecular Epidemiology of Metallo-β-lactamase Producing Pseudomonas aeruginosa Clinical Isolates

임상에서 분리된 Metallo-β-lactamase 생성 Pseudomonas aeruginosa의 분자역학

  • Choi, Myung-Won (Research Institute for Antimicrobial Resistance, Kosin University College of Medicine)
  • 최명원 (고신대학교 복음병원 항생제 내성 연구소)
  • Received : 2012.08.16
  • Accepted : 2012.08.29
  • Published : 2012.09.30

Abstract

The emergence and dissemination of carbapenem-resistant bacteria have resulted in limitations of antibiotic treatment and potential outbreaks of metallo-${\beta}$-lactamase (MBL) producing Pseudomonas aeruginosa resistant to carbapenems. In this study, we conducted molecular characterization of the MBL genes of the ${\beta}$-lactam drug-resistant P. aeruginosa and prepared basic data for treatment and prevention of proliferation of antimicrobial-resistant bacterial infections. Forty-two P. aeruginosa isolates of 254 were resistant to imipenem or meropenem. Among the 42 isolates, 28 isolates were positive for the Hodge test, and 23 isolates were positive for the EDTA-disk synergy test (EDST). MBLs were detected in 59.5% (25/42) of P. aeruginosa isolates. Eight isolates harbored $bla_{IMP-6}$, whereas 17 isolates harbored $bla_{VIM-2}$. The $bla_{IMP-6}$ gene was in a class 1 integron containing five gene cassettes: $bla_{IMP-6}$, qac, aacA4, $bla_{OXA-1}$, and aadA1. Some strains that produce IMP-6 and VIM-2 showed epidemiological relationships. The $bla_{IMP-6}$ gene in carbapenem-resistant P. aeruginosa showed an identical pattern to a gene cassette that was reported at a hospital in Daegu, Korea. Therefore, MBL-producing P. aeruginosa is already endemic in the community. We are concerned that the existence of carbapenem-resistant bacteria containing the blaMBL gene may increase pressure on antibiotic selection when treating infections. We believe that we should select appropriate antibiotics based on the antibiotic susceptibility test and continue the research to prohibit the emergence and spread of antibiotics resistant bacteria.

사람의 감염증 치료에 사용되는 carbapenem계 약제에 대한 내성균의 출현 및 확산은 감염증 치료를 제한할 뿐만 아니라 집단 발병의 원인이 될 수 있다. 이에 본 연구에서는 ${\beta}$-lactam 약제에 내성을 갖는 Pseudomonas aeruginosa (P. aeruginosa)를 대상으로 metallo-beta-lactamase (MBL)의 유전형을 규명함으로써 내성세균의 감염증 치료지침 및 확산방지책 마련에 기초 자료를 제공하고자 하였다. 본 연구의 대상이 된 254개의 임상 검체 중에서 42주의 P. aeruginosa 를 분리하여 imipenem 혹은 meropenem에 내성을 나타내는 Hodge 변법과 EDST에서 각각 28주와 23주가 양성반응을 보였다. DNA의 염기서열 분석결과 $bla_{IMP-6}$ 유전자 보유균이 8주, $bla_{VIM-2}$ 유전자 보유균이 17주로 59.5%(25/42)가 MBL을 생성하는 것으로 나타났다. $bla_{IMP-6}$의 유전자 환경은 $bla_{IMP-6}$-qac-aacA4-$bla_{OXA-1}$-aadA1 유전자 배열을 지니고 있었다. 또한 ERIC PCR 결과 IMP-6과 VIM-2를 생성하는 일부 균주에서 역학적 연관성이 있음이 확인되었다. 본 연구에서 분리한 carbapenem계 항균제 내성 P. aeruginosa가 보유한 $bla_{IMP-6}$ 유전자는 대구지역에서 발병이 보고된 유전자의 gene cassette와 일치하는 것으로 확인되었다. 따라서 이들 세균이 지역사회에 정착하고 있고 이들을 보유한 세균에 의한 감염증 치료시 치료약제에 대한 선택압을 증가시킬 것으로 우려된다. 그러므로 항균제 내성 검사를 통하여 적절한 항균제를 선택하고, 항균제 내성균들의 출현과 확산을 막는 연구가 계속되어야 할 것으로 생각된다.

Keywords

References

  1. Bermudes, H., Jude, F., Chaibi, E. B., Arpin, C., Bebear, C., Labia, R. and Quentin, C. 1999. Molecular characterization of TEM-59 (IRT-17), a novel inhibitor-resistant TEM-derived $\beta$-lactamase in a clinical isolate of Klebsiella oxytoca. Antimicrob. Agents Chemother. 43, 1657-1661.
  2. Bonfiglio, G., Laksai, Y., Granchino, L., Amicosante, G., and Nicoletti, G. 1998. Mechanisms of $\beta$-lactam resistance amongst Pseudomonas aeruginosa isolated in an Italian survey. J. Antimicrob. Chemother. 42, 697-702. https://doi.org/10.1093/jac/42.6.697
  3. Castanheira, M., Toleman, M. A., Jones, R. N., Schmidt, F. J. and Walsh, T. R. 2004. Molecular characterization of a $\beta$-lactamase gene, blaGIM-1, encoding a new subclass of metallo-$\beta$-lactamase. Antimicrob. Agents Chemother. 48, 4654-4661. https://doi.org/10.1128/AAC.48.12.4654-4661.2004
  4. Chen, H. Y., Yuan, M. and Livermore, D. M. 1995. Mechanisms of resistance to $\beta$-lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1993. J. Med. Microbiol. 43, 300-309. https://doi.org/10.1099/00222615-43-4-300
  5. Cohen, J. and Powerly, W. G. 2004. Pseudomonas and miscellaneous gram-negative bacilli. Infections Diseases, 2nd ed, New York, Mosby, 2203-2226.
  6. Lau, Y. J., Liu, P. Y., Hu, B. S., Shyr, J. M., Shi, Z. Y., Tsai, W. S., Lin, Y. H. and Tseng, C. Y. 1995. DNA fingerprinting of Pseudomonas aeruginosa serotype O11 by enterobacterial repetitive intergenic consensus-polymerase chain reaction and pulsed-field gel electrophoresis. J. Hosp. Infect. 31, 61-66. https://doi.org/10.1016/0195-6701(95)90084-5
  7. Lee, K., Chong, Y., Shin, H. B., Kim, Y. A., Yong, D. and Yum, J. H. 2001. Modified Hodge test and EDTA-disk synergy tests to screen metallo-$\beta$-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin. Microbiol. Infect. 7, 88-91. https://doi.org/10.1046/j.1469-0691.2001.00204.x
  8. Lee, K., Lim, J. B., Yum, J. H., Yong, D., Chong, Y., Kim, J. M. and Livermore, D. M. 2002. blaVIM-2 cassette-containing novel integrons in metallo-$\beta$-lactamase- producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in Korean hospital. Antimicrob. Agents Chemother. 46, 1053-1058. https://doi.org/10.1128/AAC.46.4.1053-1058.2002
  9. Lee, K., Park, A. J., Kim, M. Y., Lee, H. J., Cho, J. H., Kang, J. O., Yong, D., Chong, Y. and KONSAR group. 2009. Metallo-$\beta$-lactamase-producing Pseudomonas spp. in Korea: high prevalence of isolates with VIM-2 type and emergence of isolates with IMP-1 type. J. Yonsei Med. 50, 335-339. https://doi.org/10.3349/ymj.2009.50.3.335
  10. Lee, K., Yum, J. H., Yong, D., Lee, H. M., Kim, H. D., Docquier, J. D., Rossolini, G. M. and Chong, Y. 2005. Novel acquired metallo-$\beta$-lactamase gene, $bla_{SIM-1}$, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother. 49, 4485-4491. https://doi.org/10.1128/AAC.49.11.4485-4491.2005
  11. Livermore, D. M. 1992. Interplay of impermeability and chromosomal $\beta$-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 36, 2046-2048. https://doi.org/10.1128/AAC.36.9.2046
  12. Poirel, L., Magalhaes, M., Lopes, M. and Nordmann, P. 2004. Molecular analysis of metallo-$\beta$-lactamase gene $bla_{SIM-1}$, -surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recife, Brazil. Antimicrob. Agents Chemother. 48, 1406-1409. https://doi.org/10.1128/AAC.48.4.1406-1409.2004
  13. Queenan, A. M. and Bush, K. 2007. Carbapenemases: the versatile $\beta$-lactamases. Clin. Microbiol. Rev. 20, 440-458. https://doi.org/10.1128/CMR.00001-07
  14. Ryoo, N. H., Lee, K., Lim, J. B., Lee, Y. H., Bae, I. K. and Jeong, S. H. 2009. Outbreak by meropenem-resistant Pseudomonas aeruginosa producing IMP-6 metallo-$\beta$-lactamase in a Korean hospital. Diagn. Microbiol. Infect Dis. 63, 115-117. https://doi.org/10.1016/j.diagmicrobio.2008.08.019
  15. Sanger, F., Nicklen, S. and Coulson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74, 5463-5467. https://doi.org/10.1073/pnas.74.12.5463
  16. Satake, S., Yoshihara, E. and Nakae, T. 1990. Diffusion of $\beta$-lactam antibiotics through liposome membranes reconstituted from purified porins of the outer membrane of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 34, 685-690. https://doi.org/10.1128/AAC.34.5.685
  17. Watanabe, M., Lyobe, S., Inoue, M. and Mitsuhashi, S. 1991. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 35, 147-151. https://doi.org/10.1128/AAC.35.1.147
  18. Wayne, P. A. 2008. Performance standards for antimicrobial susceptibility testing. Clinical and Loboratory Standards Institute 18th ed, M100-S18.
  19. Yano, H., Kuga, A., Okamoto, R., Kitasato, H., Kobayashi, T. and Inoue, M. 2001. Plasmid-encoded metallo-$\beta$-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob. Agents Chemother. 45, 1343-1348. https://doi.org/10.1128/AAC.45.5.1343-1348.2001
  20. Yong, D., Choi, Y. S., Roh, K. H. and Kim, C. K. 2006. Increasing Prevalence and Diversity of Metallo-$\beta$-lactamases in Pseudomonas spp., Acinetobacter spp. from Korea. Antimicrob. Agents Chemother. 50, 1884-1886. https://doi.org/10.1128/AAC.50.5.1884-1886.2006
  21. Yum, J. H., Yi, K., Lee, H., Yong, D., Lee, K., Kim, J. M., Rossolini, G. M. and Chong, Y. 2002. Molecular characterization of metallo-$\beta$-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the blaVIM-2 gene cassettes. J. Antimicrob. Chemother. 42, 217-219.
  22. Yum, J. H., Yong, D., Lee, K., Kim, H. S. and Chong, Y. 2004. A new intergron carrying VIM-2 metallo-$\beta$-lactamase gene cassette in a Serratia marcescens isolates. Diagn. Microbiol. Infect Dis. 42, 217-219.
  23. Ziha-Zarifi, I., Llanes, C., Köhler, T., Pechere, J. C. and Plesiat, P. 1999. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob. Agents Chemother. 43, 287-291.