DOI QR코드

DOI QR Code

Generation of Transgenic Rice without Antibiotic Selection Marker through Agrobacterium-mediated Co-transformation System

아그로박테리움 동시 형질전환 시스템을 통한 항생제 선발 마커가 없는 형질전환벼의 생산

  • Park, Soo-Kwon (Function Crop Resource Development Division, Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Kwon, Tack-Min (Function Crop Resource Development Division, Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Lee, Jong-Hee (Function Crop Resource Development Division, Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Shin, Dong-Jin (Function Crop Resource Development Division, Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Hwang, Woon-Ha (Function Crop Resource Development Division, Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Song, You-Chun (Function Crop Resource Development Division, Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Cho, Jun-Hyun (Function Crop Resource Development Division, Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Nam, Min-Hee (Function Crop Resource Development Division, Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Jeon, Seung-Ho (Function Crop Resource Development Division, Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Lee, Sang-Yeol (Division of Applied Life Science, Gyeongsang National University) ;
  • Park, Dong-Soo (Function Crop Resource Development Division, Department of Functional Crop, National Institute of Crop Science, RDA)
  • 박수권 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 권택민 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 이종희 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 신동진 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 황운하 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 송유천 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 조준현 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 남민희 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 전승호 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 이상열 (경상대학교 대학원 응용생명과학부) ;
  • 박동수 (농촌진흥청 국립식량과학원 기능성작물부)
  • Received : 2012.08.10
  • Accepted : 2012.09.26
  • Published : 2012.09.30

Abstract

Development of transgenic plant increasing crop yield or disease resistance is good way to solve the world food shortage. However, the persistence of marker genes in crops leads to serious public concerns about the safety of transgenic crops. In the present paper, we developed marker-free transgenic rice inserted high molecular-weight glutenin subunit (HMW-GS) gene ($D{\times}5$) from the Korean wheat cultivar 'Jokyeong' using Agrobacterium-mediated co-transformation method. Two expression cassettes comprised of separate DNA fragments containing only the $D{\times}5$ and hygromycin resistance (HPTII) genes were introduced separately into Agrobacterium tumefaciens EHA105 strain for co-infection. Each EHA105 strain harboring $D{\times}5$ or HPTII was infected into rice calli at a 3: 1 ratio of EHA105 with $D{\times}5$ gene and EHA105 with HPTII gene expressing cassette. Then, among 66 hygromycin-resistant transformants, we obtained two transgenic lines inserted with both the $D{\times}5$ and HPTII genes into the rice genome. We reconfirmed integration of the $D{\times}5$ and HPTII genes into the rice genome by Southern blot analysis. Wheat $D{\times}5$ transcripts in $T_1$ rice seeds were examined with semi-quantitative RT-PCR. Finally, the marker-free plants containing only the $D{\times}5$ gene were successfully screened at the $T_1$ generation. These results show that a co-infection system with two expression cassettes could be an efficient strategy to generate marker-free transgenic rice plants.

작물의 수확량이나 병 저항성을 증가시키는 형질전환 식물체 개발은 세계 식량 부족을 해결하는 좋은 방법이다. 하지만 항생제나 제초제의 사용은 형질전환 작물의 안전에 대해서 일반 사람들의 심각한 우려를 초래한다. 본 연구에서는, 아그로박테리움을 이용한 동시 형질전환 방법을 이용하여 한국의 밀 재배종인 '조경밀'의 유전자인, 고분자 글루테닌 서브유닛[high molecular-weight glutenin subunit (HMW-GS)] $D{\times}5$가 삽입된 마커프리 형질전환벼를 개발하였다. 각각 $D{\times}5$ 유전자와 하이그로마이신(HPTII) 저항성 유전자만으로 구성된 두 종류의 발현 카셋트(Two expression cassettes)를 독립적으로 아그로박테리움 EHA105에 도입하였고, $D{\times}5$와 HPTII가 도입된 각각의 EHA105 아그로박테리움을 3:1 비율로 혼합하여 벼 캘러스에 접종하였다. 66개의 HPTII 저항성 형질전환체 중에서 벼 게놈에 $D{\times}5$와 HPTII가 모두 삽입된 2개의 형질전환 라인을 획득하였다. $D{\times}5$와 HPTII가 벼 게놈에 도입된 것을 Southern blot을 통해서 다시 확인하였다. 또한, semi-quantitative RT-PCR을 통해 형질전환벼 $T_1$ 세대 종자의 밀 $D{\times}5$ 전사여부를 확인하였고 결국, $D{\times}5$ 유전자만을 가지는 마커프리 형질전환벼를 $T_1$ 세대에서 선발할 수 있었다. 본 연구 결과는 두 종류의 발현 카셋트를 사용한 아그로박테리움 동시 접종 시스템이 마커프리 형질전환벼를 생산하기 위한 효과적인 전략이 될 수 있음을 보여준다.

Keywords

References

  1. Ahmad, P., Ashraf, M., Younis, M., Hu, X., Kumar, A., Akram, N. A. and Al-Qurainy, F. 2012. Role of transgenic plants in agriculture and biopharming. Biotechnol. Adv. 30, 524-540. https://doi.org/10.1016/j.biotechadv.2011.09.006
  2. An, G., Evert, P. R., Mitra, A. and Ha, S. B. 1988. Plant molecular biology manual
  3. Chakraborti, D., Sarkar, A., Mondal, H. A., Schuermann, D., Hohn, B., Sarmah, B. K. and Das, S. 2008. Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect. Plant Cell Rep. 27, 1623-1633. https://doi.org/10.1007/s00299-008-0585-y
  4. Chen, H., Nelson, R. S. and Sherwood, J. L. 1994. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. BioTechniques 16, 664-668, 670.
  5. Cho, J. I., Ryoo, N., Ko, S., Lee, S. K., Lee, J., Jung, K. H., Lee, Y. H., Bhoo, S. H., Winderickx, J., An, G., Hahn, T. R. and Jeon, J. S. 2006. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta. 224, 598-611. https://doi.org/10.1007/s00425-006-0251-y
  6. Chu, C. C., Wang, C. S., Sun, C. S., Hsu, C., Yin, K. C., Chu, C. Y. and Bi, F. Y. 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18, 659-668.
  7. Cuellar, W., Gaudin, A., Solorzano, D., Casas, A., Nopo, L., Chudalayandi, P., Medrano, G., Kreuze, J. and Ghislain, M. 2006. Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol. Biol. 62, 71-82. https://doi.org/10.1007/s11103-006-9004-3
  8. Darbani, B., Eimanifar, A., Stewart, C. N. Jr. and Camargo, W. N. 2007. Methods to produce marker-free transgenic plants. Biotechnol. J. 2, 83-90. https://doi.org/10.1002/biot.200600182
  9. de Vetten, N., Wolters, A. M., Raemakers, K., van der Meer, I., ter Stege, R., Heeres, E., Heeres, P. and Visser, R. 2003. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nature Biotech. 21, 439-442 https://doi.org/10.1038/nbt801
  10. Gleave, A. P., Mitra, D. S., Mudge, S. R. and Morris, B. A. 1999. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol. 40, 223-235. https://doi.org/10.1023/A:1006184221051
  11. Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282. https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  12. Khan, R. S., Nakamura, I. and Mii, M. 2011. Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep. 30, 1041-1053. https://doi.org/10.1007/s00299-011-1011-4
  13. Komari, T., Hiei, Y., Saito, Y., Murai, N. and Kumashiro, T. 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10, 165-174. https://doi.org/10.1046/j.1365-313X.1996.10010165.x
  14. Kuiper, H. A., Kleter, G. A., Noteborn, H. P. and Kok, E. J. 2001. Assessment of the food safety issues related to genetically modified foods. Plant J. 27, 503-528. https://doi.org/10.1046/j.1365-313X.2001.01119.x
  15. Li, Z. and Trick, H. N. 2005. Rapid method for high-quality RNA isolation from seed endosperm containing high levels of starch. BioTechniques 38, 872, 874, 876.
  16. McElroy, D., Zhang, W., Cao, J. and Wu, R. 1990. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2, 163-171. https://doi.org/10.1105/tpc.2.2.163
  17. Ramessar, K., Peremarti, A., Gomez-Galera, S., Naqvi, S., Moralejo, M., Munoz, P., Capell, T. and Christou, P. 2007. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res. 16, 261-280. https://doi.org/10.1007/s11248-007-9083-1
  18. Roy, P., Orikasa, T., Okadome, H., Nakamura, N. and Shiina, T. 2011. Processing conditions, rice properties, health and environment. Int. J. Environ. Res. Public Health 8, 1957-1976. https://doi.org/10.3390/ijerph8061957
  19. Thompson, B. G., Anderson, R. and Murray, R. G. 1980. Unusual polar lipids of Micrococcus radiodurans strain Sark. Can. J. Microbiol. 26, 1408-1411. https://doi.org/10.1139/m80-234
  20. Volkov, R. A., Panchuk, I. I. and SchoZ, F. 2003. Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J. Exp. Bot. 54, 2343-2349. https://doi.org/10.1093/jxb/erg244
  21. Wu, C. Y., Adach, T., Hatano, T., Washida, H., Suzukiand, A. and Takaiwa, F. 1998. Promoters of Rice Seed Storage Protein Genes Direct Endosperm-Specific Gene Expression in Transgenic Rice. Plant Cell Physiol. 39, 885-889. https://doi.org/10.1093/oxfordjournals.pcp.a029449
  22. Yan, Y., Hsam, S. L., Yu, J. Z., Jiang, Y., Ohtsuka, I. and Zeller, F. J. 2003. HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors. Theor. Appl. Genet. 107, 1321-1330. https://doi.org/10.1007/s00122-003-1315-z
  23. Yang, L., Kajiura, H., Suzuki, K., Hirose, S., Fujiyama, K. and Takaiwa, F. 2008. Generation of a transgenic rice seed-based edible vaccine against house dust mite allergy. Biochem. Biophys. Res. Commun. 365, 334-339. https://doi.org/10.1016/j.bbrc.2007.10.186