DOI QR코드

DOI QR Code

Raw 264.7 대식세포에서 등골나물 뿌리 추출물의 염증반응 조절 분자 iNOS와 COX-2 발현 억제 효과

Eupatorium chinensis var. simplicifolium Root Extract Inhibits the Lipopolysaccharide-Induced Inflammatory Response in Raw 264.7 Macrophages by Inhibiting iNOS and COX-2 Expression

  • 이진호 (연세대학교 과학기술대학 생명과학기술학부) ;
  • 김대현 (연세대학교 과학기술대학 생명과학기술학부) ;
  • 신지원 (연세대학교 과학기술대학 생명과학기술학부) ;
  • 박세진 (연세대학교 과학기술대학 생명과학기술학부) ;
  • 김윤석 (연세대학교 보건과학대학 임상병리학과) ;
  • 신유수 (농촌진흥청 국립원예특작과학원) ;
  • 유지연 (한국화학연구원) ;
  • 김택중 (연세대학교 과학기술대학 생명과학기술학부)
  • Lee, Jin-Ho (Division of Biological Science and Technology, College of Science and Technology, Yonsei University) ;
  • Kim, Dae-Hyun (Division of Biological Science and Technology, College of Science and Technology, Yonsei University) ;
  • Shin, Ji-Won (Division of Biological Science and Technology, College of Science and Technology, Yonsei University) ;
  • Park, Sae-Jin (Division of Biological Science and Technology, College of Science and Technology, Yonsei University) ;
  • Kim, Yoon-Suk (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Shin, Yu-Su (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ;
  • Yu, Ji-Yeon (Laboratory of Chemical Genomics, Korea Research Institute of Chemical Technology) ;
  • Kim, Tack-Joong (Division of Biological Science and Technology, College of Science and Technology, Yonsei University)
  • 투고 : 2012.07.08
  • 심사 : 2012.08.06
  • 발행 : 2012.09.30

초록

염증반응은 유해한 물질이나 병원체에 대항하여 활성화되는 생체 방어 기전이다. 그러나 과도한 염증반응은 그 자체가 생체에 좋지 않은 영향을 미칠 수 있다. 대식세포는 지질다당류와 같은 병원체를 인식한 후, NF-${\kappa}B$ 경로의 활성화를 포함한 다양한 경로를 통하여 산화질소와 같은 염증매개인자들을 분비하는 면역세포이다. 본 연구에서는 지질다당류로 활성화시킨 RAW 264.7 대식세포를 이용하여 등골나물(Eupatorium chinensis var. simplicifolium) 뿌리, 줄기 그리고 꽃 추출물들의 항염증 효과를 알아보았다. 그 중 등골나물 뿌리의 추출물은 농도의존적으로 산화질소의 생성을 감소시켰으며, 산화질소 합성유도효소(inducible nitric oxide synthase)와 고리형 산소화효소-2(cyclooxygenase-2)의 발현을 통계적으로 유의하게 감소시켰다. 또한 등골나물 뿌리의 추출물은 NF-${\kappa}B$ 경로에 있는 MAP (mitogen activated protein) 인산화효소와 단백질 인산화효소 B (protein kinase B)의 활성화를 감소시켰으며, 억제적 kappa B (inhibitory kappa B)의 분해 또한 감소시키는 것을 관찰하였다. 이러한 결과는 등골나물 뿌리의 추출물이 NF-${\kappa}B$ 경로와 산화질소 합성유도효소 발현의 억제를 통하여 항염증작용을 나타낼 수 있음을 제시한다.

Inflammation is a host defense mechanism that is activated in response to harmful substances or pathogens. However, an excessive inflammatory response is a problem in itself. Macrophages secrete inflammatory mediators such as nitric oxide (NO) or cytokines through various pathways such as the nuclear factor kappa B (NF-${\kappa}B$)-activated pathway after recognizing pathogen-like lipopolysaccharides (LPSs). In this study, anti-inflammatory effects of Eupatorium chinensis var. simplicifolium (EUC) extracts were investigated using LPS-stimulated RAW 264.7 macrophages. The EUC root extract significantly reduced NO production, inducible nitric oxide synthase (iNOS) expression, and cyclooxygenase-2 expression in a concentration-dependent manner. In addition, the EUC root extract reduced phosphorylation of mitogen-activated protein kinases and protein kinase B, which is upstream of NF-${\kappa}B$. The EUC root extract also reduced the degradation of inhibitory kappa B. These results indicate that EUC root extract exerts anti-inflammatory effects, which are mediated by inhibition of iNOS expression and the NF-${\kappa}B$ pathway.

키워드

참고문헌

  1. Akira, S., Uematsu, S. and Takeuchi, O. 2006. Pathogen recognition and innate immunity. Cell 124, 783-801. https://doi.org/10.1016/j.cell.2006.02.015
  2. Bonizzi, G. and Karin, M. 2004. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280-288. https://doi.org/10.1016/j.it.2004.03.008
  3. Carter, A. B., Knudtson, K. L., Monick, M. M. and Hunninghake, G. W. 1999. The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). J. Biol. Chem. 274, 30858-30863. https://doi.org/10.1074/jbc.274.43.30858
  4. Chakravarty, A. K., Mazumder, T. and Chatterjee, S. N. 2011. Anti-inflammatory potential of ethanolic leaf extract of eupatorium adenophorum spreng. Through alteration in Production of TNF-$\alpha$, ROS and expression of certain genes. Evid. Based Complement Alternat. Med. 471074, 1-10
  5. Chan, E. D. and Riches, D. W. 2001. IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. Am. J. Physiol. Cell Physiol. 280, C441-C450.
  6. Chao, W. W., Hong, Y. H., Chen, M. L. and Lin, B. F. 2010. Inhibitory effects of Angelica sinensis ethyl acetate extract and major compounds on NF-kappaB trans-activation activity and LPS-induced inflammation. J. Ethnopharmacol. 129, 244-249. https://doi.org/10.1016/j.jep.2010.03.022
  7. Chen, T. L., Chang, C. C., Lin, Y. L., Ueng, Y. F. and Chen, R. M. 2009. Signal-transducing mechanisms of ketamine- caused inhibition of interleukin-1 beta gene expression in lipopolysaccharide-stimulated murine macrophage-like Raw 264.7 cells. Toxicol. Appl. Pharmacol. 240, 15-25. https://doi.org/10.1016/j.taap.2009.06.013
  8. Datla, P., Kalluri, M. D., Basha, K., Bellary, A., Kshirsagar, R., Kanekar, Y., Upadhyay, S., Singh, S. and Rajagopal, V. 2010. 9,10-dihydro-2,5-dimethoxyphenanthrene-1,7-diol, from Eulophia ochreata, inhibits inflammatory signalling mediated by Toll-like receptors. Br. J. Pharmacol. 160, 1158-1170. https://doi.org/10.1111/j.1476-5381.2010.00780.x
  9. Detmers, P. A., Hernandez, M., Mudgett, J., Hassing, H., Burton, C., Mundt S., Chun, S., Fletcher, D., Card, D. J., Lisnock, J., Weikel, R., Bergstrom, J. D., Shevell, D. E., Hermanowski-Vosatka, A., Sparrow, C. P., Chao, Y. S., Rader, D. J., Wright, S. D. and Pure, E. 2000. Deficiency in inducible nitric oxide synthase results in reduced atherosclerosis in apolipoprotein E-deficient mice. J. Immunol. 165, 3430-3435. https://doi.org/10.4049/jimmunol.165.6.3430
  10. Ghosh, S., May, M. J. and Kopp, E. B. 1998. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225-260. https://doi.org/10.1146/annurev.immunol.16.1.225
  11. Guha, M. and Mackman, N. 2002. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J. Biol. Chem. 277, 32124-32132. https://doi.org/10.1074/jbc.M203298200
  12. Hattori, Y., Hattori, S. and Kasai, K. 2003. Lipopolysaccharide activates Akt in vascular smooth muscle cells resulting in induction of inducible nitric oxide synthase through nuclear factor-kappa B activation. Eur. J. Pharmacol. 481, 153-158. https://doi.org/10.1016/j.ejphar.2003.09.034
  13. Hensel, A., Maas, M., Sendker, J., Lechtenberg, M., Petereit, F., Deters, A., Schmidt, T. and Stark, T. 2011. Eupatorium perfoliatum L.: phytochemistry, traditional use and current applications. J. Ethnopharmacol. 138, 641-651. https://doi.org/10.1016/j.jep.2011.10.002
  14. Hiransai, P., Ratanachaiyavong, S., Itharat, A., Graidist, P., Ruengrairatanaroj, P. and Purintrapiban, J. 2010. Dioscorealide B suppresses LPS-induced nitric oxide production and inflammatory cytokine expression in RAW 264.7 macrophages: The inhibition of NF-kappaB and ERK1/2 activation. J. Cell. Biochem. 109, 1057-1063. https://doi.org/10.1002/jcb.22535
  15. Hwang, Y. H., Kim, M. S., Song, I. B., Lim, J. H., Park, B. K. and Yun, H. I. 2009. Anti-inflammatory effects of talosin A via inhibition of NF-kappaB activation in lipopolysaccharide-stimulated RAW 264.7 cells. Biotechnol. Lett. 31, 789-795. https://doi.org/10.1007/s10529-009-9943-2
  16. Jacobs, A. T. and Ignarro, L. J. 2001. Lipopolysaccharide-induced expression of interferon-beta mediates the timing of inducible nitric-oxide synthase induction in RAW 264.7 macrophages. J. Biol. Chem. 276, 47950-47957.
  17. Jung, H. W., Yoon, C. H., Park, K. M., Han, H. S. and Park, Y. K. 2009. Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway. Food Chem. Toxicol. 47, 1190-1197. https://doi.org/10.1016/j.fct.2009.02.012
  18. Kim, B. H., Lee, K. H., Chung, E. Y., Chang, Y. S., Lee, H., Lee, C. K., Min, K. R. and Kim, Y. 2006. Inhibitory effect of chroman carboxamide on interleukin-6 expression in response to lipopolysaccharide by preventing nuclear factor-kappaB activation in macrophages. Eur. J. Pharmacol. 543, 158-165. https://doi.org/10.1016/j.ejphar.2006.05.042
  19. Lee, H. J., Joo, M., Abdolrasulnia, R., Young, D. G., Choi, I., Ware, L. B., Blackwell, T. S. and Christman, B. W. 2010. Peptidylarginine deiminase 2 suppresses inhibitory {kappa}B kinase activity in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Biol. Chem. 285, 39655-39662. https://doi.org/10.1074/jbc.M110.170290
  20. Lee, S. J. and Lim, K. T. 2009. Inhibitory effect of ZPDC glycoprotein on the expression of inflammation-related cytokines through p38 MAP kinase and JNK in lipopolysaccharide- stimulated RAW 264.7 cells. Inflamm. Res. 58, 184-191. https://doi.org/10.1007/s00011-008-8118-2
  21. Lee, T. Y., Lee, K. C., Chen, S. Y. and Chang, H. H. 2009. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-alpha and NF-kappaB pathways in lipopolysaccharide- stimulated mouse macrophages. Biochem. Biophys. Res. Commun. 382, 134-139. https://doi.org/10.1016/j.bbrc.2009.02.160
  22. Ma, J. S., Kim, W. J., Kim, J. J., Kim, T. J., Ye, S. K., Song, M. D., Kang, H., Kim, D. W., Moon, W. K. and Lee, K. H. 2010. Gold nanoparticles attenuate LPS-induced NO production through the inhibition of NF-kappaB and IFN-beta/STAT1 pathways in RAW 264.7 cells. Nitric Oxide. 23, 214-219. https://doi.org/10.1016/j.niox.2010.06.005
  23. Martin, M., Rehani, K., Jope, R. S. and Michalek, S. M. 2005. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 6, 777-784.
  24. Martinez, F. O. 2011. Regulators of macrophage activation. Eur. J. Immunol. 41, 1531-1534. https://doi.org/10.1002/eji.201141670
  25. Moon, E. Y. and Pyo, S. 2007. Lipopolysaccharide stimulates Epac1-mediated Rap1/NF-kappaB pathway in Raw 264.7 murine macrophages. Immunol. Lett. 110, 121-125. https://doi.org/10.1016/j.imlet.2007.04.002
  26. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051-3064.
  27. Oh, J. H., Kang, L. L., Ban, J. O., Kim, Y. H., Kim, K. H., Han, S. B. and Hong, J. T. 2009. Anti-inflammatory effect of 4-O-methylhonokiol, compound isolated from Magnolia officinalis through inhibition of NF-kappaB. Chem. Biol. Interact. 180, 506-514. https://doi.org/10.1016/j.cbi.2009.03.014
  28. Park, P. H., Kim, H. S., Jin, X. Y., Jin, F., Hur, J., Ko, G. and Sohn, D. H. 2009. KB-34, a newly synthesized chalcone derivative, inhibits lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages via heme oxygenase- 1 induction and blockade of activator protein-1. Eur. J. Pharmacol. 606, 215-224 https://doi.org/10.1016/j.ejphar.2008.12.034
  29. Petros, A., Bennett, D. and Vallance, P. 1991. Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet. 338, 1557-1558. https://doi.org/10.1016/0140-6736(91)92376-D
  30. Rajaram, M. V., Ganesan, L. P., Parsa, K. V., Butchar, J. P., Gunn, J. S. and Tridandapani, S. 2006. Akt/Protein kinase B modulates macrophage inflammatory response to Francisella infection and confers a survival advantage in mice. J. Immunol. 177, 6317-6324. https://doi.org/10.4049/jimmunol.177.9.6317
  31. Reddy, D. B. and Reddanna, P. 2009. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 381, 112-117. https://doi.org/10.1016/j.bbrc.2009.02.022
  32. Sareila, O., Korhonen, R., Kärpänniemi, O., Nieminen, R., Kankaanranta, H. and Moilanen, E. 2008. Janus kinase 3 inhibitor WHI-P154 in macrophages activated by bacterial endotoxin: differential effects on the expression of iNOS, COX-2 and TNF-alpha. Int. Immunopharmacol. 8, 100-108. https://doi.org/10.1016/j.intimp.2007.10.016
  33. Takeda, K. and Akira, S. 2004. TLR signaling pathways. Semin. Immunol. 16, 3-9. https://doi.org/10.1016/j.smim.2003.10.003
  34. Wang, Y. H., Shen, Y. C., Liao, J. F., Lee, C. H., Chou, C. Y., Liou, K. T. and Chou, Y. C. 2008. Anti-inflammatory effects of dimemorfan on inflammatory cells and LPS-induced endotoxin shock in mice. Br. J. Pharmacol. 154, 1327-1338. https://doi.org/10.1038/bjp.2008.202
  35. Yu, T., Lee, Y. J., Yang, H. M., Han, S., Kim, J. H., Lee, Y., Kim, C., Han, M. H., Kim, M. Y., Lee, J. and Cho, J. Y. 2011. Inhibitory effect of Sanguisorba officinalis ethanol extract on NO and $PGE_2$ production is mediated by suppression of NF-${\kappa}B$ and AP-1 activation signaling cascade. J. Ethnopharmacol. 134, 11-17. https://doi.org/10.1016/j.jep.2010.08.060