DOI QR코드

DOI QR Code

Preparation of Defatted Grape Seed Meal Protein Composite Films

포도씨박 단백질을 이용한 가식성 필름의 제조

  • Song, Hye-Yeon (Dept. of Food Science & Technology, Chungnam National University) ;
  • Jo, Wan-Shin (Dept. of Food Science & Technology, Chungnam National University) ;
  • Song, Nak-Bum (Dept. of Food Science & Technology, Chungnam National University) ;
  • Song, Kyung-Bin (Dept. of Food Science & Technology, Chungnam National University)
  • Received : 2012.05.03
  • Accepted : 2012.07.02
  • Published : 2012.09.30

Abstract

Defatted grape seed meal protein (DGP) was extracted, and DGP films containing various plasticizers were prepared. To improve the mechanical properties of DGP film, nanoclay or gelatin was incorporated in the film-forming solution to manufacture DGP composite films. Among the plasticizers of fructose (FRU), sucrose (SUC), and polypropylene glycol (PPG), DGP film containing a SUC : PPG ratio of 2.5:0.5 exhibited the best film-forming ability. Addition of Cloisite $Na^+$ improved the mechanical properties of DGP film. Tensile strength (TS) and elongation at break (E) of the film containing 5% Cloisite $Na^+$ were 1.45 MPa and 71.97%, respectively. Regarding the DGP/gelatin composite films, TS and water vapor permeability (WVP) increased with increasing gelatin amount, whereas E decreased. In particular, the DGP/gelatin (2:2) composite film exhibited 20.95 MPa TS and 12.25% E. These results suggest that the DGP film prepared from defatted grape seed meal can be used as a food packaging material.

포도씨박으로부터 추출된 단백질에 다양한 가소제를 첨가하여 포도씨박 단백질(DGP) 필름을 제조하였고, 또한DGP 필름의 물성을 개선시키기 위해 nanoclay나 젤라틴을 첨가하여 복합필름을 제조하였다. 사용된 가소제 fructose(FRU), sucrose(SUC), polypropylene glycol(PPG) 가운데SUC와 PPG를 2.5, 0.5% 비율로 첨가한 DGP 필름이 가장필름 물성이 좋았다. DGP 복합필름의 경우, nanoclay(Cloisite$Na^+$)를 첨가함으로써 필름의 물성이 향상되었는데 5% Cloisite $Na^+$를 첨가한 인장강도와 신장률이 각각 1.45 MPa, 71.91%였다. 또한 DGP와 젤라틴의 복합필름에서는 젤라틴의 첨가량이 증가할수록 인장강도와 투습도는 증가하였고, 신장률은 감소하였다. 특히 DGP와 gelatin 비율이 각각 2%일 때 인장강도와 신장률이 20.95 MPa와 12.25%로 물성이 가장 좋았다. 본 연구결과, 미활용 되고 있는 포도씨박을 이용하여 제조한 가식성 필름은 식품포장재로써의 사용이 가능하다고 판단된다.

Keywords

References

  1. Jia D, Fang Y, Yao K. 2009. Water vapor barrier and mechanical properties of konjac glucomannan-chitosan-soy protein isolate edible films. Food Bioprod Process 87: 7-10. https://doi.org/10.1016/j.fbp.2008.06.002
  2. Kim IH, Yang HJ, Noh BS, Chung SJ, Min SC. 2012. Development of a defatted mustard meal-based composite film and its application to smoked salmon to retard lipid oxidation. Food Chem 133: 1501-1509. https://doi.org/10.1016/j.foodchem.2012.02.040
  3. Mu C, Guo J, Li X, Lin W, Li D. 2012. Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food hydrocolloid 27: 22-29. https://doi.org/10.1016/j.foodhyd.2011.09.005
  4. Ramos ÓL, Silva SI, Soares JC, Fernandes JC, Pocas MF, Pintadoa ME, Malcata FX. 2012. Features and performance od edible films, obtained from whey protein isolate formulated with antimicrobial compounds. Food Res Int 45: 351-356. https://doi.org/10.1016/j.foodres.2011.09.016
  5. Cuq B, Aymard C, Cuq JL, Guilbert S. 1995. Edible packaging films based on fish myofibrillar proteins: formation and functional properties. J Food Sci 60: 1369-1374. https://doi.org/10.1111/j.1365-2621.1995.tb04593.x
  6. Prommakool A, Sajjaanantakul T, Janjarasskul T, Krochta JM. 2011. Whey protein-okra polysaccharide fraction blend edible films: tensile properties, water vapor permeability and oxygen permeability. J Sci Food Agric 91: 362-369. https://doi.org/10.1002/jsfa.4194
  7. Gounga ME, Xu SY, Wang Z. 2007. Whey protein isolatebased edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. J Food Eng 83: 521-530. https://doi.org/10.1016/j.jfoodeng.2007.04.008
  8. Cottyn BG, Bouque CV, Aerts JV, Buysse FX. 1981. NaOH-treated grape seed oil meal in complete diets for intensive bull beef production. Agric Environ 6: 283-294. https://doi.org/10.1016/0304-1131(81)90019-9
  9. Kumar P, Sandeep KP, Alavi S, Truong VD, Gorga RE. 2010. Preparation and characterization of bio-nanocomposite films based on soy proein isolate andmontmorillonite using melt extrusion. J Food Eng 100: 480-489. https://doi.org/10.1016/j.jfoodeng.2010.04.035
  10. Park HM, Lee WK, Park CY, Cho WJ, Ha CS. 2003. Environmentally friendly polymer hybrids: Part 1 mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38: 909-915. https://doi.org/10.1023/A:1022308705231
  11. Bigi A, Cojazzi G, Panzavolta S, Roveri N, Rubini K. 2002. Stabilization of gelatin films by crosslinking with genipin. Biometerials 23: 4827-4832. https://doi.org/10.1016/S0142-9612(02)00235-1
  12. Cao N, Fu Y, He J. 2007. Preparation and physical properties of soy protein isolate and gelatin films. Food Hydrocolloids 21: 1153-1162. https://doi.org/10.1016/j.foodhyd.2006.09.001
  13. Jongjareonrak A, Benjakul S, Visessanguan W, Prodpran T, Tanaka M. 2006. Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocolloids 20: 492-501. https://doi.org/10.1016/j.foodhyd.2005.04.007
  14. Abd El-aal MH. 1992. Factors affecting production of a near-white protein isolate from grapeseed. Food/Nahrung 36: 112-118. https://doi.org/10.1002/food.19920360203
  15. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  16. Hong YH, Lim GO, Song KB. 2009. Physical properties of Gelidium corneum-gelatin blend films containing grapefruit seed extract or green tea extract and its application in the packaging of pork loins. J Food Sci 74: C6-C10. https://doi.org/10.1111/j.1750-3841.2008.00987.x
  17. Pesavento IC, Bertazzo A, Flamini R, Vedova AD, Rosso MD, Seraglia R, Traldi P. 2008. Differentiation of Vitis vinifera varieties by MALDI-MS analysis of the grape seed protiens. J Mass Spectrom 43: 234-241. https://doi.org/10.1002/jms.1295
  18. Fantozzi P. 1981. Grape seed: a potential source of protein. J Am Oil Chem Soc 58: 1027-1031. https://doi.org/10.1007/BF02679319
  19. Cappellini E, Gilbert MTP, Geuna F, Fiorentio G, Hall A, Thomas-Oates J, Ashton PD, Ashford DA, Arthur P, Campos PF, Kool J, Willerslev E, Collins MJ. 2010. A multi-disciplinary study of archaeological grape seeds. Naturwissenschaften 97: 205-217. https://doi.org/10.1007/s00114-009-0629-3
  20. Shin YJ, Jang SA, Song KB. 2011. Preparation and mechanical properties of rice bran protein composite films containing gelatin or red algae. Food Sci Biotechnol 20: 703-707. https://doi.org/10.1007/s10068-011-0099-1
  21. Cao N, Yang X, Fu Y. 2009. Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloids 23: 729-735. https://doi.org/10.1016/j.foodhyd.2008.07.017
  22. Parris N, Coffin DR. 1997. Composition factors affecting the water vapor permeability and tensile properties hydrophilic zein films. J Agric Food Chem 45: 1596-1599. https://doi.org/10.1021/jf960809o
  23. Oralic O, Rouilly A, Silvestrrre F, Luc R. 2003. Effects of various plasticizers on the mechanical properties, water resistance and aging of thermo-moulded films made from sunflower proteins. Ind Crop Prod 18: 91-100. https://doi.org/10.1016/S0926-6690(03)00015-3
  24. Sothornvit R, Krochta JM. 2000. Plasticizer effect on oxygen permeability of $\beta$-lactoglobilin films. J Agric Food Chem 48: 6298-6302. https://doi.org/10.1021/jf000836l
  25. Jang SA, Shin YJ, Song KB. 2011. Effects of various plasticizers and nano-clays on the mechanical properties of red algae film. J Food Sci 76: N30-N34. https://doi.org/10.1111/j.1750-3841.2011.02089.x
  26. Wan VCH, Kim MS, Lee SY. 2005. Water vapor permeability and mechanical properties of soy protein isolate edible films composed of different plasticizer combinations. J Food Sci 70: E387-391.
  27. Sothornvit R, Krochta JM. 2001. Plasticizer effect on mechanical properties of $\beta$-lactoglobilin films. J Agr Food Eng 50: 149-155. https://doi.org/10.1016/S0260-8774(00)00237-5
  28. Cuq B, Gontard N, Cuq JL, Guilbert S. 1997. Selected functional properties of fish myofibriller protein-based films as affected by hydrophilic plasticizers. J Agr Food Chem 45: 622-626. https://doi.org/10.1021/jf960352i
  29. Lim GO, Jang SA, Song KB. 2010. Physical and antimicrobial properties of gelidium corneum/nano-clay composite film containing grapefruit seed extract or thymol. J Food Eng 98: 415-420. https://doi.org/10.1016/j.jfoodeng.2010.01.021
  30. Xu Y, Ren X, Hanna MA. 2006. Chitosan/clay nanocomposite film preparation a characterization. J Appl Polym Sci 99: 1684-1691. https://doi.org/10.1002/app.22664
  31. Ray SS, Okamoto M. 2003. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28: 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  32. Dean K, Yu L, Wu DY. 2007. Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Compos Sci Technol 67: 413-421. https://doi.org/10.1016/j.compscitech.2006.09.003
  33. Chambi H, Grosso C. 2006. Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Res Int 39: 458-466. https://doi.org/10.1016/j.foodres.2005.09.009
  34. Dong Z, Wang Q, Du Y. 2006. Alginate/gelatin blend films and their properties for drug controlled release. J Membrane Sci 280: 37-44. https://doi.org/10.1016/j.memsci.2006.01.002
  35. Jiang Y, Li Y, Chai Z, Leng X. 2010. Study of the physical properties of whey protein isolate and gelatin composite films. J Agric Food Chem 58: 5100-5108. https://doi.org/10.1021/jf9040904

Cited by

  1. Characterization of a Corn Fiber Protein Film Containing Green Tea Extract vol.58, pp.2, 2015, https://doi.org/10.3839/jabc.2015.025
  2. Preparation of Makgeolli Residue Protein Film Containing Wasabi Extract and Its Application vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.268