DOI QR코드

DOI QR Code

Screening of Biological Activity of Caragana sinica Extracts

골담초(Caragana sinica) 추출물의 생리활성 탐색

  • Jeon, Young-Suk (School of Food Science, Kyungpook National University) ;
  • Jo, Bun-Sung (School of Food Science, Kyungpook National University) ;
  • Park, Hye-Jin (School of Applied Bioscience, Kyungpook National University) ;
  • Kang, Sun-Ae (School of Applied Bioscience, Kyungpook National University) ;
  • Cho, Young-Je (School of Food Science & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University)
  • 전영숙 (경북대학교 식품과학부) ;
  • 조분성 (경북대학교 식품과학부) ;
  • 박혜진 (경북대학교 응용생명과학부) ;
  • 강선애 (경북대학교 응용생명과학부) ;
  • 조영제 (경북대학교 식품공학부/식품생물산업연구소)
  • Received : 2012.05.07
  • Accepted : 2012.07.18
  • Published : 2012.09.30

Abstract

In this study, extracts from Caragana sinica flowers and leaves were tested for antioxidant and angiotensin converting enzyme inhibitory activities, along with xanthine oxidase, tyrosinase, elastase, and astringent effects. Total phenolic compounds of acetone extracts from Caragana sinica flowers and leaves were the highest at 3.42 and 2.98 mg/g, respectively, when various extraction solvents were used. Optimal conditions for extraction of phenolic compounds from Caragana sinica leaves and flowers were 70% ethanol for 18 hr. DPPH scavenging activities were the highest in 70% ethanol extracts of Caragana sinica. ABTS radical cation decolorization values of 70% ethanol extracts were higher than those 60% ethanol extracts at 74%. Antioxidant protection factor was 1.2 PF in 70% ethanol extracts from Caragana sinica flowers and leaves. TBARS was lower than that of control (0.54 ${\mu}M$) in all sections. Angiotensin converting enzyme inhibitory activity of Caragana sinica flower extract was 80~90% at a phenolic concentration of 0.2~1.0 mg/mL, whereas xanthin oxidase inhibitory activity of Caragana sinica leaf extract was higher than that of flower extract. Tyrosinase inhibitory activity, which is related to skin-whitening, was above 20%, whereas elastase inhibitory activity related to anti-wrinkle effect was above 50% at a phenolic concentration of 0.8 mg/mL. Astringent effects of Caragana sinica flower and leaf extracts were higher than tannic acid as a control at an equivalent concentration. This result suggests that extracts from Caragana sinica flowers and leaves are suitable as functional foods having anti-hypertension, anti-gout, and medicinal cosmetic activities, including whitening and anti-wrinkle effects.

골담초에 함유된 페놀성 물질은 70% 에탄올을 용매로 하여 18시간 추출하였을 때 가장 많이 용출되었다. 항산화 효과 중 전자공여능을 측정한 결과는 꽃과 잎 모두 70% 에탄올 추출물에서 74%로 가장 높은 항산화 활성을 나타내었으며, ABTS radical cation decolorization을 측정한 결과, 꽃의 경우 70~90% 에탄올 추출물에서 60% 이상의 항산화 활성을 나타내었다. 지용성 물질에 대한 항산화력으로 antioxidant protection factor(PF)를 측정한 결과, 70% 에탄올 추출물에서 1.2 이상의 PF를 나타내었다. 활성산소 중 지방산화를 일으키는 hydroxyl radical에 대한 골담초 추출물의 영향은 꽃의 물 추출물과 70% 에탄올 추출물에서 대조구보다 낮은 TBARS 값을 나타내었다. ACE에 대한 골담초 추출물의 저해활성은 꽃의 경우 물과 70% 에탄올 추출물 모두 80~99%의 높은 저해활성을 나타내었고, Xoase 대한 저해활성은 꽃보다 잎 추출물의 저해활성이 높았다. 골담초 추출물의 주름개선과 미백효과를 확인한 결과 꽃과 잎 추출물 모두 페놀성 물질을 0.8 mg/mL의 농도로 처리하였을 때 50% 이상의 elastase 저해활성과 70% 에탄올 추출물에서 40.24%로 가장 높은 tyrosinase 저해활성을 나타내었고, 수렴효과는 같은 농도의 tannic acid보다 높은 수렴효과를 나타내었다.

Keywords

References

  1. Position of the American Dietetic Association: nutrition, aging, and the continuum of care. 2000. J Am Diet Assoc 100: 580-595. https://doi.org/10.1016/S0002-8223(00)00177-2
  2. Rice-Evans CA, Miller NJ, Paganga G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med 20: 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  3. Kinsella JE, Frankel E, German B, Kanner J. 1993. Possible mechanism for the protective role of antioxidants in wine and plant foods. Food Technol 478: 85-89.
  4. Lee YS, Yoon HK, Kim NW. 2010. The physiological activities of ripe fruit of Poncirus trifoliata. Kor J Food Preserv 17: 698-705.
  5. Seung HK, Kim IH. 1978. Sterol composition of Caragana sinica study. Kor J Parmacog Soc 22: 219-223.
  6. Lee YB, Kang SS. 1990. Saponins from the roots Caragana sinica. Kor J Pharmacog 21: 193-199. https://doi.org/10.1007/BF02973986
  7. Lee SD, Kim IH. 1992. Studies on the active ingredient Caragana sinica roots. Chungang Univ Thesis 35: 1-29.
  8. Gwak JH, Kim IH. 1974. The studies on the anti-inflammatory activity of Caragana sinica root. Kor J Pharmacog 5: 179-185.
  9. Hwang GJ, Kim UH. 1983. Anti-inflammatory and analgesic activities of the root of Caragana koreana. Kor J Pharmacog 14: 140-146.
  10. Folin O, Denis W. 1912. On phosphotungastic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-249.
  11. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  12. Pellegrin N, Roberta R, Min Y, Catherine RE. 1998. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2'-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Method Enzymol 299: 379-389.
  13. Andarwulan N, Shetty K. 1999. Phenolic content in differentiated tissue cultures of untansformed and Ahrobacteriumtransformed roots of anise (Pimpinella anisum L.). J Agric Food Chem 47: 1776-1780. https://doi.org/10.1021/jf981214r
  14. Buege JA, Aust SD. 1978. Microsomal lipid peroxidation. Method Enzymol 105: 302-310.
  15. Cushman DW, Cheung HS. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20: 1637-1648. https://doi.org/10.1016/0006-2952(71)90292-9
  16. Stirpe F, Corte ED. 1969. The regulation of rat liver xanthin oxidase. J Biol Chem 244: 3855-3862.
  17. Imokawa G, Mishima Y. 1981. Isolation and characterization of tyrosinase inhibitors using tyrosinase binding affinity chromatography. Br J Dermatol 104: 531-539. https://doi.org/10.1111/j.1365-2133.1981.tb08167.x
  18. Lee JT, Jeong YS, An BJ. 2002. Physiological activity of Salicornia herbacea and its application for cosmetic materials. Kor J Herbology 17: 51-60.
  19. Lee KT, Lee SY, Jeong JH, Jo BK. 1999. New anti-wrinkle cosmetics. Coreana Cosmetics Co., Ltd, Sungnam, Korea.
  20. Choi HS, Kim MG, Shin JJ, Pack JM, Lee JS. 2003. The antioxidant activities of the some commercial teas. J Korean Soc Food Sci Nutr 32: 723-727. https://doi.org/10.3746/jkfn.2003.32.5.723
  21. Shin HL. 2003. Biological activity of phenol compound from mulberry fruits. MS Thesis. Sangju National University, Sangju, Korea.
  22. Aoshima H, Tsumoue H, Koda H, Kiso Y. 2004. Aging of whiskey increases 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. J Agric Food Chem 52: 5240-5244. https://doi.org/10.1021/jf049817s
  23. Cho YJ, Ju IS, Chun SS, An BJ, Kim JH, Kim MU, Kwon OJ. 2008. Screening of biological activities of extracts from Rhododendron mucronulatum Turcz. flowers. J Korean Soc Food Sci Nutr 37: 276-281. https://doi.org/10.3746/jkfn.2008.37.3.276
  24. Miyoshi D, Richard LS. 1975. Pulmonary angiotensin converting enzyme. J Biol Chem 250: 6762-6768.
  25. Funayama S, Hikono H. 1979. Hypotensive principles of Diospyors kaki leaves. Chem Pharm Bull 27: 2865-2871. https://doi.org/10.1248/cpb.27.2865
  26. Stewart JM, Ferreira SH, Greene LJ. 1971. An inhibitors of the pulmonary inactivation of bradykinin and conversion of angiotensin I to II. Biochem Pharmacol 20: 157-163.
  27. Kameda K, Takaku T, Okyada H, Kimyra S. 1987. Inhibitory effects of various flavonoids isolated from leaves of persimmon on angiotensin-converting enzyme activity. J Nat Prod 50: 680-683. https://doi.org/10.1021/np50052a017
  28. Noro T, Fukushima S. 1988. Inhibitors of xanthine oxidase from the flowers and buds of Daphne genkwa. Chem Pharm Bull 31: 3984-3988.
  29. Chun SS, Vattem DA, Lin YT, Shetty K. 2005. Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochem 40: 809-816. https://doi.org/10.1016/j.procbio.2004.02.018
  30. Laskin JD, Piccinini LA. 1986. Tyrosinase isozyme heterogeneity in differentiating B-16/C3 melanoma. J Biol Chem 261: 16626-16635.
  31. Kim MR, Hwang JH, Yun JK, Han KH, Do EJ, Lee JS, Lee EJ, Kim JB. 2011. Antioxidation and anti-aging effect of mixed extract from Korean medicinal herbs. Kor J Herbology 26: 111-117.
  32. Dewitt DL, Rollins TE, Day JS, Gauger JA, Smith WL. 1981. Orientation of the active site and antigenic determinants of prostaglandin endoperoxide of synthase in the endoplasmic reticulum. J Biol Chem 256: 10375-10382.
  33. Kawak YJ, Lee DH, Kim NM, Lee JS. 2005. Screening and extraction condition of anti-skin aging elastase inhibitor from medicinal plants. Kor J Med Crop Sci 3: 213-216.
  34. Kim MJ, Kim JY, Choi SW, Hong JT, Yoon KS. 2004. Antiwrinkle effect of safflower (Cathamus tinctotius) seed extract. J Kor Soc Cosmetic Sci 30: 15-22.
  35. Tsuji N, Moriwaki S, Suzuki Y, Takema Y, Imokawa G. 2001. The role of elastases secreted by fibroblasts in wrinkle formation: implication through selective inhibition of elastase activity. Photochem Photobiol 74: 283-290. https://doi.org/10.1562/0031-8655(2001)074<0283:TROESB>2.0.CO;2

Cited by

  1. Effects of a Caragana sinica Water Extract on Lipid and Glucose Metabolism in Ovariectomized Rats vol.29, pp.5, 2016, https://doi.org/10.7732/kjpr.2016.29.5.532
  2. Comparative Study on Antioxidant Effects of Extracts from Rubus coreanus and Rubus occidentalis vol.43, pp.9, 2014, https://doi.org/10.3746/jkfn.2014.43.9.1357
  3. Effect of Shading Degree and Rooting Media on Growth of Cuttings in Caragana sinica (Buc’hoz) Rehder and Sedum middendorffianum Maxim vol.23, pp.4, 2015, https://doi.org/10.7783/KJMCS.2015.23.4.271
  4. Biological activities ofBrassica rapa(Turnip) callus extracts by plant cell culture technology vol.43, pp.2, 2016, https://doi.org/10.5010/JPB.2016.43.2.248
  5. Biological Activities of Extracts from Gamma-irradiated Aralia elata Cortex vol.43, pp.8, 2014, https://doi.org/10.3746/jkfn.2014.43.8.1236
  6. Inhibitory activities on biological enzymes of extracts from Oplismenus undulatifolius vol.60, pp.2, 2017, https://doi.org/10.3839/jabc.2017.017
  7. B16F10 melanoma cell을 이용한 캐모마일(Matricaria chamomilla L.) 추출물의 미백 효과 vol.61, pp.3, 2012, https://doi.org/10.3839/jabc.2018.038
  8. 골담초 열수추출물의 이화학적 특성 및 MIA를 이용한 동물모델에서 골관절염 개선 효과 vol.32, pp.6, 2019, https://doi.org/10.9799/ksfan.2019.32.6.678
  9. 몽골과 미얀마 식물 14종의 3T3-L1 및 HepG2 세포에서 지질 축적 억제효과 vol.36, pp.1, 2021, https://doi.org/10.7318/kjfc/2021.36.1.130