Anti-inflammatory Activity of Veronica peregrina

  • Jeon, Hoon (College of Pharmacy, Woosuk University)
  • Received : 2012.03.09
  • Accepted : 2012.05.07
  • Published : 2012.09.30

Abstract

Veronica peregrina (Scrophylariaceae) has been widely used as a Korean traditional medicine for the treatment of various pathological conditions including infection, hemorrhage and gastric ulcer. In the current study, we investigated the inhibitory effect of methanolic extracts of V. Peregrina (VPM) on the LPS-mediated nitric oxide (NO) production in mouse (C57BL/6) peritoneal macrophages. NO production was significantly down-regulated by the treatment of VPM dose dependently. To evaluate the mechanism of the inhibitory action of VPM on NO production, we performed iNOS enzyme activity assay and checked the change of inducible nitric oxide synthase (iNOS) levels by Western blotting. Although VPM did not affect iNOS enzyme activity, iNOS protein expression was attenuated by VPM indicating VPM inhibits NO production via suppression of iNOS enzyme expression. In addition, VPM attenuated the expression of another pro-inflammatory mediator such as cyclooxygenase-2 (COX-2) in a dose dependent manner. We also found that VPM can reduce trypsin-induced paw edema in mice. Based on this study, we suggest that V. peregrina may be beneficial in diseases which related to macrophage-mediated inflammatory disorders.

Keywords

References

  1. Ahn, D.R., Lee, S.I., and Yang, JH., Superoxide Radical Scavengers from the Whole Plant of Veronica peregrina. Nat. Product Sci. 17, 142-146 (2011).
  2. Audrey, V. and Siamon, G., Alternative activation of macrophages: Immune function and cellular biology. Immunobiology 214, 630-641 (2009). https://doi.org/10.1016/j.imbio.2008.11.009
  3. Bredt, D.S., Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radicical. Res. 31, 577-596 (1999). https://doi.org/10.1080/10715769900301161
  4. Brown, C.G., Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta. 1411, 351-369 (1999). https://doi.org/10.1016/S0005-2728(99)00025-0
  5. Chang, Y.C., Li, P.C., Chen, B.C., Chang, M.S., Wang, J.L., Chiu, W.T., and Lin, C.H., Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin E2, protein kinase A, p38 MAPK, and nuclear factor-kappa B pathways. Cell. Signal. 18, 1235-1243 (2006). https://doi.org/10.1016/j.cellsig.2005.10.005
  6. Fujiwara, N. and Kobaashi, K., Macrophages in inflammation. Curr. Drug Targets Inflamm. Allergy 4, 281-286 (2005). https://doi.org/10.2174/1568010054022024
  7. Gyorgy, N., Joanna, M.C., Edit, I.B., Claire, L.G., and Andrew, P.C., Nitric oxide, chronic inflammation and autoimmunity. Immunology Letters 111, 1-5 (2007). https://doi.org/10.1016/j.imlet.2007.04.013
  8. Israf, D.A., Khaizurin, T.A., Syahida, A., Lajis, N.H., and Khozirah, S., Cardamonin inhibits COX and iNOS expression via inhibition of p65 NF-kappa B nuclear translocation and I-kappa B phosphorylation in RAW 264.7 macrophage cells. Mol. Immunol. 44, 673-679 (2006).
  9. Kawabata, A., Kuroda, R., Minami, T., Kataoka, K., and Taneda, M., Increased vascular permeability by a specific agonist of proteaseactivated receptor-2 in rat hindpaw. Br. J. Pharmacol. 125, 419-422 (1998). https://doi.org/10.1038/sj.bjp.0702063
  10. Kim, H.K., Cheon, B.S., Kim, Y.H., Kim, S.Y., and Kim, H.P., Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem. Pharmacol. 58, 759-765 (1999). https://doi.org/10.1016/S0006-2952(99)00160-4
  11. Kwak, J.H., Kim, H.J., and Lee, K.H., Antioxidative Iridoid Glycosides and Phenolic Compounds from Veronica peregrina. Arch. Pharmacal Res. 32, 207-213 (2009). https://doi.org/10.1007/s12272-009-1137-x
  12. Lawrence, T., Willoughby, D.A., and Gilroy, D.W., Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat. Rev. Immunol. 10, 787-795 (2002).
  13. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63 (1983). https://doi.org/10.1016/0022-1759(83)90303-4
  14. Park, E.J., Min, H.Y., Ahn, Y.H., Bae, C.M., Pyee, J.H., and Lee, S.K., Synthesis and inhibitory effects of pinosylvin derivatives on prostaglandin E2 production in lipopolysaccharide-induced mouse macrophage cells. Bioorg. Mad. Chem. Lett. 14, 5895-5898 (2004). https://doi.org/10.1016/j.bmcl.2004.09.022
  15. Paszcuk, A.F., Quintao, N.L., Fernandes, E.S., Juliano, L., Chapman, K., Andrade-Gordon, P., Campos, M.M., Vergnolle, N., and Calixto, J.B., Mechanisms underlying the nociceptive and inflammatory responses induced by trypsin in the mouse paw. Eur. J. Pharmacol. 581, 204-215 (2008). https://doi.org/10.1016/j.ejphar.2007.11.025
  16. Ponchel, F., Morgan, A.W., Bingham, S.J., Quinn, M., Buch, M., Verburg, R.J., Henwood, J., Douglas, S.H., Masurel, A., Conaghan, P., Gesinde, M., Taylor, J., Markham, A.F., Emery, P., van Laar, J.M., and Isaacs, J.D., Dysregulated lymphocyte proliferation and differentiation in patients with rheumatoid arthritis. Blood 100, 4550-4556 (2002). https://doi.org/10.1182/blood-2002-03-0671
  17. Rakel, D.P. and Rindfleisch, A., Inflammation: nutritional, botanical, and mind-body influences. South Med. J. 98, 303-310 (2005). https://doi.org/10.1097/01.SMJ.0000154775.16761.A9
  18. Saha, K., Lajis, N.H., Israf, D.A., Hamzah, A.S., Khozirah, S., Khamis, S., and Syahida, A., Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants. J. Ethnopharmacol. 92, 263-267 (2004). https://doi.org/10.1016/j.jep.2004.03.007
  19. Sakagami, T., Vella, J., Dixon, M.F., O'Rourke, J., Radcliff, F., Sutton, P., Shimoyama, T., Beagley, K., and Lee, A., The endotoxin of Helicobacter pylori is a modulator of host-dependent gastritis. Infect Immun. 65, 3310-3316 (1997).
  20. Seo, W.G., Pae, H.O., Oh, G.S., Chai, K.Y., Kwon, T.O., Yun, Y.G., Kim, N.Y., and Chung, H.T., Inhibitory effects of methanol extract of Cyperus rotundus rhizomes on nitric oxide and superoxide productions by murine macrophage cell line, RAW 264.7 cells. J. Ethnopharmacol. 76, 59-64 (2001). https://doi.org/10.1016/S0378-8741(01)00221-5
  21. Stephanie, L., Andreas, W., and Bernhard, B., Neuromediators in inflammation-a macrophage/nerve connection. Immunobiology 215, 674-684 (2010). https://doi.org/10.1016/j.imbio.2010.05.027
  22. Thiemermann, C. and Vane, J., Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur. J. Pharmacol. 182, 591-595 (1990). https://doi.org/10.1016/0014-2999(90)90062-B
  23. Van't, Hof, R.J. and Ralston, S.H., Nitric oxide and bone. Immunology 103, 255-261 (2001). https://doi.org/10.1046/j.1365-2567.2001.01261.x