DOI QR코드

DOI QR Code

석탄 물성에 따른 직접탄소 연료전지의 전기화학 반응 특성 연구

A Study on the Effect of Coal Properties on the Electrochemical Reactions in the Direct Carbon Fuel Cell System

  • 투고 : 2012.06.28
  • 심사 : 2012.08.14
  • 발행 : 2012.10.01

초록

본 논문에서는 석탄의 물리적 화학적 구조에 의한 직접탄소 연료전지 내부의 전기화학 반응 특성의 변화에 대하여 연구하였다. 석탄의 구조, 표면적 및 기공체적, 작용기의 분포 등을 분석하기 위하여 다양한 분석 기법(TGA, XRD, BET, XPS)을 사용하였다. 석탄 내부에 존재하는 탄소의 강력한 결정구조는 연료의 비표면적 및 기공크기를 축소시켜 고 전류밀도 영역에서 급격한 포텐셜의 감소를 초래한다. 표면에 분포하는 작용기는 저전류 밀도 영역에서의 전기화학 반응에 영향을 미치며, 제한 전류밀도 및 최대 전력밀도는 전체 탄소의 양과 밀접한 상관관계를 가지고 있다는 것을 확인할 수 있었다. 전해질의 물질전달 향상 및 작동온도에 의한 영향도 논하였다.

Performance evaluation of a direct carbon fuel cell (DCFC) was conducted according to coals and a graphite particle. Several fuel properties such as thermal reactivity, textural structure, gas adsorption characteristic, and functional groups on the surface of fuels were investigated and their effects on electrochemistry were discussed. The strong carbon structure inside of fuels led the rapid potential decreasing in high current density region, because it caused small surface area and low pore volume. The functional groups on the surface were related to the low current density region. The maximum current density and power density of fuels were affected by the total carbon content in fuels. The effect of operating conditions such as stirring rate and operating temperature was investigated in this study.

키워드

참고문헌

  1. Giddey, S., Badwal, S. P. S., Kulkarni, A. and Munnings, C., 2012, "A Comprehensive Review of Direct Carbon Fuel Cell Technology," Progress in Energy and Combustion Science, Vol. 38, pp. 360-399. https://doi.org/10.1016/j.pecs.2012.01.003
  2. Agency, I. E., 2007, "World Energy Outlook 2007 China and India Insights," IEA, Paris, p. 663.
  3. Kim, T. S. and Park, S. K., 2009, "Integrated Power Generation Systems Based on High Temperature Fuel Cells - A Review of Research and Development Status," Journal of Mechanical Science and Technology, Vol. 33, Issue 5, pp. 299-310.
  4. Ko, T. W., Ahn, S. Y., Choi, G. M. and Kim, D. J., 2011, "Study on the Effect of Physical Properties of Fuels on the Anode Reaction in a DCFC System," Journal of Energy Engineering, Vol. 20, No. 4, pp. 309-317. https://doi.org/10.5855/ENERGY.2011.20.4.309
  5. Li, X. Zhu, Z., De Marco, R., Bradley, J. and Dicks, A., 2010, "Evaluation of Raw Coals as Fuels for Direct Carbon Fuel Cells," Journal of Power Source, Vol. 195, pp. 4051-4058. https://doi.org/10.1016/j.jpowsour.2010.01.048
  6. Li, X., Zhu, Z., De Marco, R., Bradley, J. and Dicks, A., 2009, "Carbon Nanofibers Synthesized by Catalytic Decomposition of Methane and Their Electrochemical Performance in a Direct Carbon Fuel Cell," Energy & Fuels, Vol. 23, pp. 3721-3731. https://doi.org/10.1021/ef900203h
  7. Li, X., Zhu, Z., De Marco, R., Dicks, A., Bradley, J., Liu, S. and Lu, G. Q., 2008, "Factors that Determine the Performance of Carbon Fuels in the Direct Carbon Fuel Cell," Industrial & Engineering Chemistry Research, Vol. 47, pp. 9670-9677. https://doi.org/10.1021/ie800891m
  8. Li, X., Zhu, Z., Chen, J., De Marco, R., Dicks, A., Bradley, J. and Lu, G., 2009, "Surface Modification of Carbon Fuels for Direct Carbon Fuel Cells," Journal of Power Source, Vol. 186, pp. 1-9. https://doi.org/10.1016/j.jpowsour.2008.09.070
  9. Vutetakis, D. G., Skidmore, D. R. and Byker, H. J., 1987, "Electrochemical Oxidation of Molten Carbonate Coal Slurries," Journal of the Electrochemical Society, Vol. 34, pp. 3027-3035.
  10. Fauth, D. J., Hoffman, J. S., R. Reasbeck, P. and Pennline, H. W., 2004, "CO2 Scrubbing with Novel Lithium Zirconate Sorbents," Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., Vol. 49, No. 1, p. 311.
  11. Cullity, B. D. and Stock, S. R., Elements of X-Ray Diffraction, Prentice Hall, 3rd, pp. 95-170.
  12. Hautojärvi, P., Lehmusoksa, I., Jauho, P., Komppa, V. and Pajanne, E., 1974, "Positron as a Probe for the Degree of Crystallization in Glass," Solid State Communications, Vol. 15, pp. 1859-1861. https://doi.org/10.1016/0038-1098(74)90103-3
  13. Elleuch, A., Boussetta, A. and Halouani, K., 2012, "Analytical Modeling of Electrochemical Mechanisms in $CO_{2}$ and CO/$CO_{2}$ Producing Direct Carbon Fuel Cell," Journal of Electroanalytical Chemistry, Vol. 668, pp. 99-106. https://doi.org/10.1016/j.jelechem.2012.01.010
  14. Li, H., Liu, Q. and Li, Y., 2010, "A Carbon in Molten Carbonate Anode Model for a Direct Carbon Fuel Cell," Electrochimica Acta, Vol. 55, pp. 1958-1965. https://doi.org/10.1016/j.electacta.2009.11.015