DOI QR코드

DOI QR Code

변형률에너지밀도를 이용한 타이어용 고무의 피로 특성 평가

Evaluation of Fatigue Characteristics of Rubber for Tire Using Strain Energy Density

  • 안상수 (성균관대학교 기계공학부) ;
  • 김성래 (넥센타이어(주) 연구개발본부) ;
  • 박한석 (넥센타이어(주) 연구개발본부) ;
  • 강용구 (넥센타이어(주) 연구개발본부) ;
  • 구재민 (성균관대학교 기계공학부) ;
  • 석창성 (성균관대학교 기계공학부)
  • 투고 : 2012.02.23
  • 심사 : 2012.07.24
  • 발행 : 2012.10.01

초록

초탄성 재료인 고무는 타이어의 주 원료인데, 주행 중 다양한 형태의 하중을 받는다. 그와 같은 하중에 의하여 타이어에 변형률에너지가 축적되어 파손에 이르게 된다. 일반적으로 초탄성재료인 고무는 금속과 다른 응력연화 특성을 갖고 있기 때문에 금속의 시험법을 적용할 수 없다. 따라서 본 연구에서는 조성비가 다른 2 종의 타이어용 고무에 대한 피로특성을 평가하기 위하여, ASTM D4482 규격에서 요구하는 변형률 범위를 확장하여 인장 및 피로시험을 진행하였으며, 실험 결과를 이용하여 피로수명식을 제안하였다.

Rubber, a hyperelastic material, is the main material used in tires. During the operation of a car, the tire receives various types of loads. The accumulation of strain energy due to such loads induces tire failure. Generally, because rubber materials used for tires have stress softening characteristics, unlike metals, test methods used for metals cannot be applied to rubber. Therefore, in this study, for the evaluation of the fatigue properties of two types of specimens that have different material components, a tensile test and a fatigue test according to the extended strain range dissimilar to ASTM D4482 are performed, and fatigue life equations are proposed based on the test results.

키워드

참고문헌

  1. Park, G. Y., Choi, J. W., Lee, K. C. and Jin, Y. K., 2006, "Certification Technological Trends in Aerospace tire," Korea Aerospace Research Institute, Current Industrial and Technological Trends in Aerospace, Vol. 4, No. 2, pp. 68-75
  2. Hong, S. J. and Lee, H. G., 2005, "Investigation of Market Status of Imported Tires and Quality Evaluation," Transactions of KSAE, Vol. 13, No. 6, pp. 1-6.
  3. Kim, W. D., Woo, C. S., Kim, K. S. and Kwon, J. D., 2002, "An Experimental Study on the Dynamic Characteristics of Rubber Isolator," Elastomer, 37, 183.
  4. Mullins, L. 1969, "Softening of Rubber by Deformation," Rubber Chemistry and Technology, Vol. 42, No. 1, pp. 339-362. https://doi.org/10.5254/1.3539210
  5. ASTM D4482 "Standard Test Method for Rubber Property-Extension Cycling Fatigue."
  6. Woo, C. S., Kim, W. D. and Kwon, J. D., 2004, "Fatigue Life Prediction and Evaluation of Rubber Components" The Korea Society of Automotive Engineers, KSAE 04-S0273, pp.1712-1717
  7. Woo, C. S., Kim, W. D., Kim, W. S. and Kwon, J. D., 2004, "Effects of Maximum Strain and Aging Conditions on the Fatigue Life of Vulcanized Natural Rubber," the Korea Society of Automotive Engineers, KSAE, Vol. 12 No. 4, pp.181-190.
  8. Zine, A., Benseddiq, N. and Nait Abdelaziz, M., 2011, "Rubber Fatigue Life Under Multiaxial Loading: Numerical and Experimental Investigations," International Journal of Fatigue, Vol. 33, No. 10, pp.1360-1368. https://doi.org/10.1016/j.ijfatigue.2011.05.005
  9. Koo, J. M. and Choy, Y. S., 1991, "A New Mixed Mode Fracture Criterion: Maximum Tangential Strain Energy Density Criterion," Engineering Fracture Mechanics, Vol. 39, No. 3, pp. 443-449. https://doi.org/10.1016/0013-7944(91)90057-8
  10. Mroz, K. P. and Mroz, Z., 2010, "On Crack Path Evolution Rules," Engineering Fracture Mechanics, Vol. 77, No. 11, pp.1781-1807. https://doi.org/10.1016/j.engfracmech.2010.03.038
  11. Lee, H. Y. and Lee, J. H., 2004, "Development and Verification of Micro-Indentation Technique for Material Property Evaluation of Hyper-elastic Rubber," The Korean Society of Mechanical Engineers Spring Conference, pp.132-137.
  12. Hwang, K. M., Oh, J. S. and Lee, H. Y., 2009, "Enhanced Spherical Indentation Techniques for Rubber Property Evaluation," Transactions of the KSME A, Vol.33 No.12, pp.1357-1365.
  13. Rivlin, R. S., 1956, "Large Elastic Deformations in Rheology: Theory and Application," Academic Press, New York. Vol. 1.
  14. Ogden, R. W., 1972, "Large Deformation Isotropic Elasticity-On the Correlation of Theory and Experiment for Incompressible Rubber-like Solids," Proceedings of Royal Society of London, Vol. A 326, pp.565-584.
  15. Yeoh, O. H., 1990, "Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates," Rubber Chemistry and Technology, Vol. 63, No. 5, pp.792-805. https://doi.org/10.5254/1.3538289
  16. Yeoh, O. H., 1993, "Some Forms of the Strain Energy Function for Rubber," Rubber chemistry and Technology, Vol. 66, No. 5, pp.754-771. https://doi.org/10.5254/1.3538343
  17. Yeoh, O. H., 2002, "Relation Between Crack Surface Displacements and Strain Energy Release Rate in Thin Rubber Sheets," Mechanics of Materials, Vol. 34, No. 8, pp.459-474. https://doi.org/10.1016/S0167-6636(02)00174-6
  18. Woo, C. S., Kim, W. D. and Kwon, J. D., 2008, "A Study on the Material Properties and Fatigue Life Prediction of Natural Rubber Component," Materials Science and Engineering : A, Vol. 483-484, pp.376-381. https://doi.org/10.1016/j.msea.2006.09.189
  19. Mars, W. V., 2004, "Factors that Affect the Fatigue Life of Rubber : A Literature Survey," Journal of Rubber Chemistry and Technology, Vol. 77, No. 3, pp.391-412. https://doi.org/10.5254/1.3547831