DOI QR코드

DOI QR Code

Review on Application of Biosystem Modeling: Introducing 3 Model-based Approaches in Studying Ca Metabolism

  • Lee, Wang-Hee (Department of Biosystems Machinery Engineering, Chungnam National University) ;
  • Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, Chungnam National University)
  • Received : 2012.07.26
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

Purpose: This review aims at introducing 3 modeling approaches classified into 3 categories based on the purpose (estimation or prediction), structure (linear or non-linear) and phase (steady-state or dynamic-state); 1) statistical approaches, 2) kinetic modeling and 3) mechanistic modeling. We hope that this review can be a useful guide in the model-based approach of calcium metabolism as well as illustrates an application of engineering tools in studying biosystems. Background: The meaning of biosystems has been expanded, including agricultural/food system as well as biological systems like genes, cells and metabolisms. This expansion has required a useful tool for assessing the biosystems and modeling has arisen as a method that satisfies the current inquiry. To suit for the flow of the era, examining the system which is a little bit far from the traditional biosystems may be interesting issue, which can enlarge our insights and provide new ideas for prospective biosystem-researches. Herein, calcium metabolic models reviewed as an example of application of modeling approaches into the biosystems. Review: Calcium is an essential nutrient widely involved in animal and human metabolism including bone mineralization and signaling pathways. For this reason, the calcium metabolic system has been studied in various research fields of academia and industries. To study calcium metabolism, model-based system analyses have been utilized according to the purpose, subject characteristics, metabolic sites of interest, and experimental design. Either individual metabolic pathways or a whole homeostasis has been modeled in a number of studies.

Keywords

References

  1. Abraham, A. K., D. E. Mager, X. Gao, M. Li, D. R. Healy and T. S. Maurer. 2009. Mechanism-based pharmacokinetic/ pharmacodynamic model of parathyroid hormonecalcium homeostasis in rats and humans. Journal of Pharmacology and Experimental Therapeutics 330(1): 169-78. https://doi.org/10.1124/jpet.109.152033
  2. Bronner, F., D. Pansu and W. D. Stein. 1986. An analysis of intestinal calcium transport across the rat intestine. American Journal of Physiology 250(5 Pt 1):G561-9.
  3. Bryant, R. J., M. E. Wastney, B. R. Martin, O. Wood, G. P. McCabe, M. Morshidi, D. L. Smith, M. Peacock and C. M. Weaver. 2003. Racial differences in bone turnover and calcium metabolism in adolescent females. Journal of Clinical Endocrinology & Metabolism 88(3):1043-7. https://doi.org/10.1210/jc.2002-021367
  4. Denk, E., D. Hillegonds, J. Vogel, A. Synal, C. Geppert, K. Wendt, K. Fattinger, C. Hennessy, M. Berglund, R. F. Hurrell and T. Walczyk. 2006. Labeling the human skeleton with 41Ca to assess changes in bone calcium metabolism. Analytical and Bioanalytical Chemistry 386(6):1587-602. https://doi.org/10.1007/s00216-006-0795-5
  5. Doty, S. E. and R. C. Seagrave 2000. Human water, sodium, and calcium regulation during space flight and exercise. Acta astronautica 46(9):591-604. https://doi.org/10.1016/S0094-5765(00)00020-5
  6. El-Samad, H., J. P. Goff and M. Khammash. 2002. Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. Journal of Theoretical Biology 214(1):17-29. https://doi.org/10.1006/jtbi.2001.2422
  7. Epstein, M. F. 1994. Winds of change: current focus of the Modeling in Physiology department. American Journal of Physiology 267(4, Pt.1):E628.
  8. Feher, J. J., C. S. Fullmer and R. H. Wasserman. 1992. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. American Journal of Physiology 262(2 Pt 1):C517-26.
  9. Hasling, C., K. Sondergaard, P. Charles and L. Mosekilde. 1992. Calcium metabolism in postmenopausal osteoporotic women is determined by dietary calcium and coffee intake Journal of Nutrition 122(5):1119-26.
  10. Heaney, R. P., M. S. Dowell and R. L. Wolf. 2002. Estimation of true calcium absorption in men. Clinical Chemistry 48(5):786-8.
  11. Heaney, R. P. and R. R. Recker. 1985. Estimation of true calcium absorption. Annals of Internal Medicine 103(4): 516-21. https://doi.org/10.7326/0003-4819-103-4-516
  12. Heaney, R. P. and R. R. Recker. 1988. Estimating true fractional calcium absorption. Annals of Internal Medicine 108(6):905-6.
  13. Heaney, R. P. and G. D. Whedon. 1958. Radiocalcium studies of bone formation rate in human metabolic bone disease. Journal of Clinical Endocrinology & Metabolism 18(11):1246-67. https://doi.org/10.1210/jcem-18-11-1246
  14. Hill, K. M., M. Braun, M. Kern, B. R. Martin, J. W. Navalta, D. A. Sedlock, L. McCabe, G. P. McCabe, M. Peacock and C. M. Weaver. 2008. Predictors of calcium retention in adolescent boys. Journal of Clinical Endocrinology & Metabolism 93(12):4743-8. https://doi.org/10.1210/jc.2008-0957
  15. Hurwitz, S., S. Fishman, A. Bar, M. Pines, G. Riesenfeld and H. Talpaz 1983. Simulation of calcium homeostasis: modeling and parameter estimation. American Journal of Physiology 245(5 Pt 1):R664-72.
  16. Hurwitz, S., S. Fishman and H. Talpaz. 1987a. Calcium dynamics: a model system approach. Journal of Nutrition 117(4):791-6. https://doi.org/10.1093/jn/117.4.791
  17. Hurwitz, S., S. Fishman and H. Talpaz. 1987b. Model of plasma calcium regulation: system oscillations induced by growth. American Journal of Physiology, 252(6 Pt 2):R1173-81.
  18. Jung, A., P. Bartholdi and B. Mermillod. 1978. Critical analysis of methods for analysing human calcium kinetics. Journal of Theoretical Biology 73(1):131-57. https://doi.org/10.1016/0022-5193(78)90183-2
  19. Komarova, S. V. 2005. Mathematical model of paracrine interactions between osteoclasts and osteoblasts predicts anabolic action of parathyroid hormone on bone. Endocrinology 146(8):3589-95. https://doi.org/10.1210/en.2004-1642
  20. Komarova, S. V., R. J. Smith, S. J. Dixon, S. M. Sims and L. M. Wahl. 2003. Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33(2):206-15. https://doi.org/10.1016/S8756-3282(03)00157-1
  21. Kreutz, C. and J. Timmer. 2009. Systems biology: experimental design. FEBS Journal 276(4):923-942. https://doi.org/10.1111/j.1742-4658.2008.06843.x
  22. Kroll, M. H. 2000. Parathyroid hormone temporal effects on bone formation and resorption. Bulletin of Mathematical Biology 62(1):163-88. https://doi.org/10.1006/bulm.1999.0146
  23. Kutner, M. H. 2005. Applied linear statistical models, 5th ed. Boston, MA: McGraw-Hill Irwin.
  24. Lee, W., G. P. McCabe, B. R. Martin and C. M. Weaver. 2011a. Validation of a simple isotope method for estimating true calcium fractional absorption in adolescents. Osteoporosis International 22(1):159-66. https://doi.org/10.1007/s00198-010-1203-8
  25. Lee, W. H., M. E. Wastney, G. S. Jackson, B. R. Martin and C. M. Weaver. 2011b. Interpretation of 41Ca data using compartmental modeling in post-menopausal women. Analytical and Bioanalytical Chemistry 399(4): 1613-22. https://doi.org/10.1007/s00216-010-4454-5
  26. Lemaire, V., F. L. Tobin, L. D. Greller, C. R. Cho and L. J. Suva. 2004. Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. Journal of Theoretical Biology 229(3):293-309. https://doi.org/10.1016/j.jtbi.2004.03.023
  27. Martin, B. 1994. Mathematical model for the mineralization of bone. Journal of Orthopaedic Research 12(3):375-83. https://doi.org/10.1002/jor.1100120310
  28. Nordin, B. E. 1990. Calcium homeostasis. Clinical biochemistry 23(1):3-10. https://doi.org/10.1016/0009-9120(90)90309-I
  29. Nordin, B. E., H. A. Morris, J. M. Wishart, F. Scopacasa, M. Horowitz, A. G. Need and P. M. Clifton. 1998. Modification and validation of a single-isotope radiocalcium absorption test. Journal of Nuclear Medicine 39(1):108-13.
  30. Peterson, M. C. and M. M. Riggs. 2010. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 46(1):49-63. https://doi.org/10.1016/j.bone.2009.08.053
  31. Powell, T. 1972. A mathematical model for calcium homeostasis. Bulletin of mathematical biophysics 34(4):483-502. https://doi.org/10.1007/BF02476710
  32. Powell, T. and M. E. Valentinuzzi. 1974. Calcium homeostasis: responses of a possible mathematical model. Medical and biological engineering 12(3):287-94. https://doi.org/10.1007/BF02477793
  33. Raposo, J. F., L. G. Sobrinho and H. G. Ferreira. 2002. A minimal mathematical model of calcium homeostasis. Journal of Clinical Endocrinology & Metabolism 87(9):4330-40. https://doi.org/10.1210/jc.2002-011870
  34. Rattanakul, C., Y. Lenbury, N. Krishnamara and D. J. Wollkind. 2003. Modeling of bone formation and resorption mediated by parathyroid hormone: response to estrogen/PTH therapy. Bio Systems 70(1):55-72. https://doi.org/10.1016/S0303-2647(03)00040-6
  35. Shahnazari, M., D. B. Burr, W. H. Lee, B. R. Martin and C. M. Weaver. 2010. Cross-calibration of 45calcium kinetics against dynamic histomorphometry in a rat model to determine bone turnover. Bone 46(5):1238-43. https://doi.org/10.1016/j.bone.2010.02.003
  36. Slepchenko, B. M. and F. Bronner. 2001. Modeling of transcellular Ca transport in rat duodenum points to coexistence of two mechanisms of apical entry. American Journal of Physiology, 281(1):C270-81. https://doi.org/10.1152/ajpcell.2001.281.1.C270
  37. Spence, L. A., E. R. Lipscomb, J. Cadogan, B. Martin, M. E. Wastney, M. Peacock and C. M. Weaver. 2005. The effect of soy protein and soy isoflavones on calcium metabolism in postmenopausal women: a randomized crossover study. The American Journal of Clinical Nutrition 81(4):916-22.
  38. Tomera, J. F. and C. Harakal. 1997. Multiple linear regression analysis of blood pressure, hypertrophy, calcium and cadmium in hypertensive and nonhypertensive states. Food and Chemical Toxicology 35(7):713-8. https://doi.org/10.1016/S0278-6915(97)00042-2
  39. Wastney, M. E. 1999. Investigating biological systems using modeling: strategies and software. San Diego, CA: Academic Press.
  40. Wastney, M. E., J. Ng, D. Smith, B. R. Martin, M. Peacock and C. M. Weaver. 1996. Differences in calcium kinetics between adolescent girls and young women. American Journal of Physiology, 271(1 Pt 2):R208-16.
  41. Wastney, M. E., K. N. Subramanian, N. Broering and R. Boston. 1997. Using models to explore whole-body metabolism and accessing models through a model library. Metabolism 46(3):330-2. https://doi.org/10.1016/S0026-0495(97)90261-4
  42. Wastney, M. E., Y. Zhao and S. M. Smith. 2005. Modelling human calcium dynamics as a mechanism for exploring changes in calcium homeostasis during space flight. In: Mathematical Modelling in Nutrition and Toxicology, eds. J. Hargrove and C. Berdanier, pp. 157-170. Athens, GA: Mathematical Biology Press.
  43. Weaver, C. and R. Heaney. 2006. Calcium in human health. New York, NY: Humana press.
  44. Weaver, C. M. and R. P. Heaney. 1999. Calcium. In: Modern nutrition in health and disease, eds. M. E. Shils, J. A. Olson, M. Shike and A. C. Ross, pp. 141-167. Philadelphia, PA: Lippincott Williams and Wilkins.
  45. Weaver, C. M., E. Janle, B. Martin, S. Browne, H. Guiden, P. Lachcik and W. H. Lee. 2009. Dairy versus calcium carbonate in promoting peak bone mass and bone maintenance during subsequent calcium deficiency. Journal of Bone and Mineral Research 24(8):1411-9. https://doi.org/10.1359/jbmr.090303

Cited by

  1. Review of Ca Metabolic Studies and a Model for Optimizing Gastrointestinal Ca Absorption and Peak Bone Mass in Adolescents vol.40, pp.1, 2015, https://doi.org/10.5307/JBE.2015.40.1.078
  2. A novel approach in analyzing agriculture and food systems: Review of modeling and its applications vol.43, pp.2, 2016, https://doi.org/10.7744/kjoas.20160019