특집 : 보호가스와 용접성

GMAW 용접 시 보호가스 변화에 따른 TRIP 60 강재의 기계적 물성 특성

김 재 성*·우 영 관*·이 보 영*,[†]
*한국항공대학교 항공우주 및 기계공학과

Characteristics of Mechanical Properties on 600MPa Grade TRIP Steel Using the Various Shielding Gases in the GMAW

Jae-Seong Kim*, Young-Kwan Woo* and Bo-Young Lee*,†

*Dept. of Aerospace and Mechanical Engineering, Korea Aerospace University

*Corresponding author : bylee@kau.ac.kr

1. 서 론

1990년대 자동차 산업에 있어 최대 관심사는 엔진 개발을 통한 최대의 연료 효율을 확보하고 자동차의 무 게를 증가시켜 안전성과 편안함을 개선하고 차량 사용 에 있어 기능적인 부분을 부가하는 것이었다. 하지만, 최근 전 세계적인 에너지 및 환경규제 등의 문제가 대 두되기 시작하면서 일본, 유럽 등지에서 법제화를 통해 자동차 중량을 감소시키는 것이 큰 이슈로 대두되고 있 다. 자동차에 있어 무게를 줄이게 되면 차량의 연비를 줄일 수 있으며, 배기가스 배출을 감소시키게 되어 화 석연료의 소비 감소 및 환경오염 방지에 큰 역할을 할 수가 있다. 반면 자동차의 안전성, 편의성 등을 바라는 다양한 소비자의 욕구를 충족시키기 위해 많은 장치들 을 자동차에 추가 장착함으로써 자동차의 중량은 증가 하게 되었다. 따라서 이러한 상반되는 문제를 해결하기 위해 철강 소재에서 마그네슘 합금, 알루미늄 합금, 플 라스틱 등의 가벼운 비철합금 소재의 사용이 제안되고 있으나 가격, 안전성, 내구성 등의 문제로 그 사용은 제한되고 있는 실정이다. 이에 따라 자동차구조용 소재 는 안전성 및 내구성을 위해 높은 강도와 연성을 동시 에 확보하고 있는 고장력강재의 사용이 증가하고 있다. DP 강, TRIP 강, CP 강, Hot-stamping 강 등 600MPa부터 1.500MPa까지 다양한 강도의 강재들이 차체 제작에 있어 사용되고 있다¹⁻³⁾. 특히 최근에는 동 일 강도에서 연신율이 좋은 DP 강재나 TRIP 강재를 자동차 차체 제작에 많이 사용하고 있을 뿐만 아니라. 강도를 증가시켜 안전성 향상을 하면서도 무게를 줄일 수 있는 Hot-stamping 강재의 사용 영역도 점차 확대 되고 있다. 이중 TRIP강(Transformation Induced Plasticity steel) 재는 상온에서 페라이트(Ferrite), 베이나이트(Bainite), 잔류 오스테나이트(Retained Austenite) 등으로 조직이 구성되어 있으며 성형 중 잔류 오스테나이트가 마르텐사이트(Martensite)로 변 하면서 강도가 높아지고 가공경화속도가 빨라져 연신율 이 증가되면서 석출강화 및 복합조직강보다 높은 강도 와 우수한 성형성을 가지는 장점이 있다⁴⁻⁵⁾. 한편, 우리 나라 자동차 생산라인에 있어 점용접을 할 수 없는 폐 구간 등에 사용되는 GMA 용접 공정에서는 대부분 CO₂ 100%의 보호가스를 사용하여 자동차를 생산하고 있다. CO2 100%를 사용하는 용접은 보호가스의 특성 으로 인해 반발이행과 단락이행의 금속이행모드를 가지 며, 이때 나타나는 불안정한 아크로 인해 스패터 비산 량이 많고, 융착 및 용락 등의 문제가 발생하기도 하여 차체 안정화단계에 들어선 자동차 생산라인의 많은 비 가동의 원인을 제공하기도 한다. 강도가 우수하고 성형 성이 좋은 TRIP 강재에 대해 국내에서는 많은 연구들 이 이루어지고 있지만, 주로 점용접과 레이저 용접에 있어 나타나는 용접특성에 대한 연구들이 대부분이다. 이에 본 연구에서는 TRIP 600 강재를 사용하여 GMAW 용접시 보호가스의 변화에 따라 기계적 성질 에 미치는 영향을 평가하고자 하였다.

2. 실험 방법

본 연구에서는 현재 자동차 차체 제작에 있어 많이 사용되고 있는 두께 1.5mm인 TRIP 600 강재를 사용하여 보호가스를 CO_2 100%, Ar 100%, CO_2 15%에 Ar 85%로 바꾸어가며 두 가지 속도 조건에서 BOP (Bead on plate) 용접을 실시하였다⁶⁻⁷⁾. 이때 나타나는 용접부의 경도, 인장강도 등을 확인하였으며, 용접후 나타나는 조직의 변화도 관찰하였다. TRIP 강재의기계적 물성치 및 화학조성은 Table 1과 2에 나타내었다.

용접기는 국내 업체에서 제작된 350A 급 GMAW 용접기를 사용하였으며, CTWD는 12mm, 용접전원은 직류역극성 등 기본 용접 조건들은 모두 동일하게 진행하였으며, 용접속도와 전류 변화를 통해 입열량을 유사하게 하고자 하였으나, 실측값에 있어 약간의 차이를 보였다. Table 3에 용접 조건을 제시하였다⁸⁾. 보호가스 유량은 모든 조건에서 201/min의 유량을 공급하였으며, CO₂ 15%에 Ar 85% 혼합가스는 혼합기를 사용하지 않고 사전에 혼합되어진 가스봄베를 사용하였다. 경도는 HV1로 10초동안 유지한 후 측정하였으며, Nital 10%를 사용하여 15초간 부식시켜 조직을 250배로 관찰하였다.

Table 1 Mechanical properties of TRIP 600 steel

TRIP 600	항복강도 〔MPa〕	인장강도 〔MPa〕	연신율 [%]
	400	625	30.0

Table 2 Chemical composition of TRIP 600 steel

TRIP 600	С	Si	Mn	Р	S	Fe
	0.36	0.20	0.68	0.015	0.004	Bal.

Table 3 Welding test conditions

No.	Shield Gas (%)	Welding Speed (m/min)	Heat Input (kW/ _{min})
1	CO ₂ -100	0.6	101
2	CO ₂ -100	1.2	102
3	$CO_2 - 15 + Ar - 85$	0.6	87
4	CO ₂ - 15 + Ar - 85	1.2	102
5	Ar - 100	0.6	134
6	Ar - 100	1.2	143

3. 결과 및 고찰

3.1 비드 용접 결과

TRIP 600 1.5mm 시험편에 비드 용접을 용접속도 변화를 통해 입열량을 바꾸어가며 용접을 실시하였으 며, 용접 후 용접 비드 외관을 Fig. 1에서 보여주고 있 다. Table 4는 실험조건 (1), (3), (5)번에 대한 비드 단면을 보여주고 있는데 용락 조건 직전까지 용접을 진 행하여 비드 이면비드 형상도 관찰하였다. 일반적으로 잘 알려진 바대로 비드 외관의 경우 Ar을 85% 혼합하 고 낮은 속도를 용접한 조건에서 가장 미려한 비드를 확보할 수 있었으며, CO2 100% 용접의 경우 스패터 가 많이 발생하는 것을 확인하였다. 또한, CO₂ 100% 의 보호가스를 사용한 경우 Ar 100%의 경우보다 크레 이터의 함몰이 더 심하게 일어났음을 관찰할 수 있다. Table 4에 제시된 비드단면에서 보듯이 Ar 100% 조 건에 비해 CO₂ 100%와 Ar85%에 CO₂를 15%를 혼 합한 조건에서 용입이 더 깊은 것을 알 수 있다. 이는 사용한 보호가스에 포함된 산소의 영향으로 표면 장력 이 온도에 따라 증가하여 용융풀이 비드 중심에서 아래 로 작용하게 되면서 용입이 깊어지게 된 것이다. 또한, 용접 시 지속적으로 인가된 입열에 따라 용접이 끝나는 시점에서는 일반적으로 크레이터 전류를 설정 전류에 50% 이상을 낮추어 사용하기 때문에 용접쇳물이 줄어

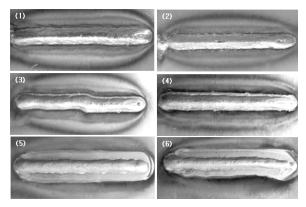


Fig. 1 External bead shape

 Table 4
 Bead section macro image

No.	Shield Gas (%)	Welding Speed (m/min)	Bead section image
1	CO ₂ -100	0.6	
3	CO ₂ - 15 + Ar - 85	0.6	
5	Ar - 100	0.6	

Table 5 Measured data of bead shape

No.	bead width (mm)	penetration (mm)	bead reinforcement (mm)
1	4.06	1.57	0.93
3	4.34	1.65	0.63
5	3.17	1.43	1.16

들어 크레이터가 더욱 함몰된 것이다. Table 4와 5에서 보여주고 있는 것처럼 보호가스를 Ar85%에 CO₂ 15% 조건에서 용접한 경우에 비드 폭, 용입이 가장 넓고 깊음을 알 수 있다. 이는 자동차 차체 GMA 용접 공정에서 나타나는 용접이음의 갭 문제를 충분히 해결할 수 있는 조건이라고 판단된다. 물론 보호가스의 비용이 증가할 수는 있으나, 비가동에 따른 생산성을 비교하여 현장 적용을 고려해볼 수 있을 것으로 판단된다.

3.2 조직 시험 결과

경도 시험 후 광학현미경을 이용하여 x250로 모재부, HAZ부, 용접금속, fusion line에 대한 보호가스종류에 따라 마이크로 조직을 촬영하였다. 에칭은 Nital 10%로 15초간 부식시켜 단면을 확보하였다. Fig. 2는모재, HAZ 등 각 조직 사진을 촬영한 위치를 보여주고있다.

조직 촬영 결과 Fig. 3~5에서 보여주고 있듯이, 모재부(Fig. 2 (a) 위치)는 대부분 다각형으로 성장하는 등축 페라이트(polygonal ferrite)와 베이나이트(bainite), 잔류오스테나이트 (retained austenite)로 구성되어 있는 것을 확인하였으며, Ar 100%의 경우 Fig. 2의 (c) 영역에서 다른 조건에 비해 입열량이 높았기 때문에 grain이 커지는 경향은 있었다. 하지만, 보호가스에따라 조직의 큰 변화는 없는 것으로 판단된다. Fig. 2의 (b), (c) 위치에서는 입계 페라이트, 침상 페라이트, 판상 페라이트와 베이나이트 등으로 구성되어 있으며, 용접금속인 (d) 위치의 경우 주로 침상 및 등축 페라이트로 구성되어 있었다.

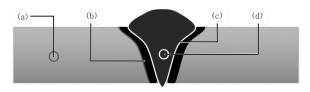
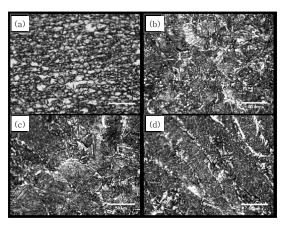



Fig. 2 Schematic of microstructure observing point of the bead-on-plate welding, (a) base metal, (b) heat affected zone, (c) partially melted zone and (d) weld metal, with various shielding gas

3.3 경도 시험 결과

용접후 마크로 단면에 대한 경도 측정을 실시하였다. 경도는 HV1으로 300 μ m 간격으로 측정하였으며, 실측 입열량을 고려할 때, Fig. 6의 (a)에 있어 입열량이 가

Fig. 3 Microstructures of GMAW with CO₂ 100% shielding gas

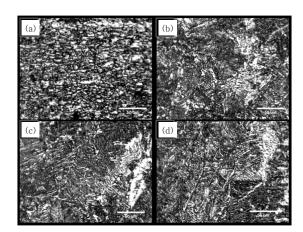
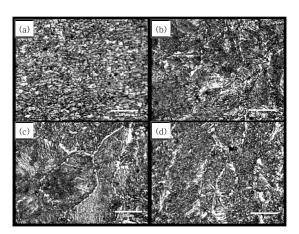



Fig. 4 Microstructures of GMAW with Ar 100% shielding gas

Fig. 5 Microstructures of GMAW with Ar 85% + CO₂ 15% shielding gas

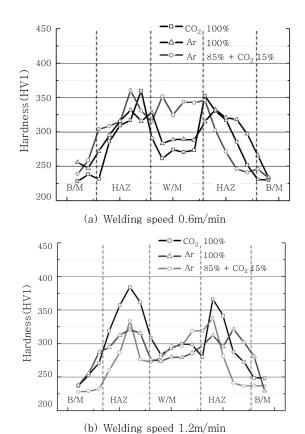


Fig. 6 Results of hardness test

장 낮게 측정된 Ar 85%에 CO₂ 15% 조건에서 용접 금속의 경도 값이 높게 측정되었다. 이는 입열량이 낮아 냉각이 빠르게 진행되면서 경도값이 상승한 것으로 판단된다. 또한, Ar 85%에 CO₂ 15% 조건에서 용접 금속의 경도가 HAZ 부위 경도와 유사하게 측정된 것을 볼 때, Ar 85%에 CO₂ 15%의 혼합가스를 보호가스로 사용할 경우 84kW/min의 입열량을 좀더 증가시키기 위해 전류를 상승시키거나 용접속도를 0.6m/min이하에서 용접하는 것이 좋을 것으로 판단된다.

Fig. 6의 (b)에서 보는 것처럼 용접속도가 빠를 경우 보호가스를 100% CO₂를 사용한 조건의 HAZ부에서 가장 높은 경도값을 나타내고 있다. 이는 동일한 용접 조건을 사용하여 용접을 진행하는 경우 보호가스를 CO₂ 100%로 사용하기보다는 혼합가스나 Ar 100%를 사용하는 것이 HAZ부의 경화 조직을 최대한 감소시켜 낮은 경도값을 확보하는데 좋을 것으로 판단된다. 일반적으로 레이저나 저항점 용접으로 TRIP 강재를 용접하여 경도 시험한 값은 HV 400~500 정도로 GMAW에비해서는 높은 경도 값을 가진다. 이는 용접 프로세스의 차이로 사용되지는 용도에 맞게 용접법도 선택하여 사용하는 것이 좋다.

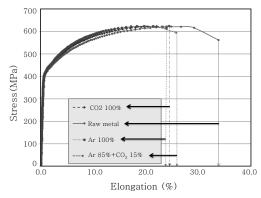


Fig. 7 Results of tensile test

3.2 인장시험 결과

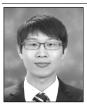
용접 조건 2, 4, 6으로 제작된 시험편을 사용하여 인장시험편을 제작하였으며, 인장 시험은 65N/sec로 실시하였다. 모든 시험편은 모재에서 파단이 발생하였으며, 모재보다 용접후 연신율이 줄어드는 것을 확인하였다. 보호가스 별로 용접한 TRIP 600강재의 인장시험 결과 큰 차이가 없었지만, 혼합가스를 사용할 경우의 연신율이 좀 더 증가하는 것을 확인할 수가 있었다. Fig. 7은 인장시험 결과에 대한 그래프를 나타내고 있다.

4. 결 론

이상의 실험으로 보호가스에 따른 TRIP 600 강재의 기계적 물성 및 조직 특성에 대해 평가할 수 있었으며, 다음과 같은 결론을 얻었다.

- 1) CO₂ 100% 용접이나 혼합가스의 경우에 미려한 비드를 얻을 수가 있었으며, 보호가스에 포함되어 있는 산소에 의해 용입이 깊고 비드 폭이 넓어져 자동차 차체 GMA 공정에서 발생하는 갭에 대한 대응을 위해 사용할 수 있을 것으로 판단된다.
- 2) Ar 100%를 보호가스로 사용한다면 비드가 봉긋하고 폭이 좁으며, 용입이 깊지 않아 자동차 제작시 사용하기에는 적절하지 않는 보호가스이다.
- 3) 보호가스에 따라 용접 조직의 변화는 없는 것으로 판단되며, Ar 100%를 사용한 조건에서는 세팅한 용접 조건의 입열량에 비해 더 큰 입열이 모재에 전달되어 그레인 크기가 좀 커지는 것에 영향을 미친 것으로 보 인다.
- 4) GMA 용접 적용하여 경도값을 측정한 결과 일반 적인 레이저 용접, 저항점 용접을 실시한 경우보다 경 도 측정 값이 낮게 나타났으며, 이는 다른 용접법보다

높은 입열을 가지는 것에 기인한다. 또한, 유사한 입열 량을 사용하여 용접을 진행할 경우 CO_2 100% 용접의 경우에는 속도를 늦추고 전류를 증가시켜 용접하는 것을 추천한다.


5) 인장강도의 경우 혼합가스에서 연신율이 좀 더 높은 것을 확인하였으며, 차체 제작시 소요되는 비용을 고려하여 적당한 혼합가스를 쓰는 것은 필요할 것으로 판단된다.

참 고 문 헌

- K. I. Sugimoto, N. Ushi, M. Kobayashi and S. I. Hashimoto: Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels. ISIJ Inter. 32 (1992), 1311-1318
- 2. H. C. Chen, H. Era and M. Shimizu: Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet. Metall. Trans. **20A** (1989), 437-445

- 김재성
- 1977년생
- 한국항공대학교 항공우주 및 기계공학과
- 아크용접 및 용접공정
- e-mail : kim0961@kau..ac.kr

- 우영관
- 1983년생
- 한국항공대학교 항공우주 및 기계공학과
- 용접공학
- e-mail : nameless83@nate.com

- 3. KAPUSTKA, C. CONRARDY, S. BABU, AND C. ALBRIGHT: Effect of GMAW Process and Material Conditions on DP 780 and TRIP 780 Weld. Welding journal. 87 (2008), 135-148
- Farrar. R. A., Harrison. P. L.: Acicular ferrite in carbon-manganese weld metals: Journal of Material Science. 22 (1987), 3812 - 3820
- 5. Babu. S. S., Bhadeshia. H. K. D. H.: Mechanism of the transition from bainite to acicular ferrite. Materials Transactions. JIM. **32(8)** (1991), 679-688
- Tae-Kyo Han, Seung-Jun Kim, Bong-Keun Lee, Dae-Up Kim and Chung-Yun Kang: Characteristics of CO₂ or Nd: YAG Laser Welded 600MPa Grade TRIP Steel. Journal of KWJS. 24-1 (2006), 56-63 (in Korean)
- D.Y. Choi : Improvement of Resistance Spot Weldability of TRIP Steels. KWJS-spring (2005), p. 136
- 8. T. Kim, H. Park, S. Rhee and Y.K. Oh: Optimization of Resistance Spot Welding Process for TRIP Sheets using Response Surface Methodology. KSME spring (2003), 1131-1136

- 이보영
- 1953년생
- 한국항공대학교 항공우주 및 기계공학부
- •용접 및 생산공학
- e-mail : bylee@kau.ac.kr