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INEQUALITIES VIA POWER SERIES AND CAUCHY-SCHWARZ
INEQUALITY

Moonja Jeong

Abstract. In this note we study Nesbitt’s Inequality and modify it to make several
inequalities. We prove some inequalities by using power series and Cauchy-Schwarz
Inequality.

1. Introduction

Many inequalities in analysis comes from using convexity. If a real function
defined on an interval is convex, then the secant line which connects any two points
of the given convex function lies above the graph of the given function. It can be
written as

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2)

where f is a convex function, any two points x1, x2 are in Dom(f), and 0 ≤ α ≤ 1.
Jensen’s Inequality proved by Danish mathematician J. Jensen in 1906 that con-

nects the value of a convex function of an integral and the integral of the convex
function. One of its forms can be stated as

f(
n∑

i=1

αixi) ≤
n∑

i=1

αif(xi)

where f is a convex function, x1, · · · , xn are in Dom(f), and α1, · · · , αn are positive
weights with

∑n
j=1 αj = 1 (see [3, p.90]). We note that if f is a concave function,

the opposite inequality holds.
If we take f(x) = xk for x ≥ 0 with k ∈ N ∪ {0} and each αi = 1/n, then

(
x1 + · · ·+ xn

n

)k

≤ 1
n

(x1
k + · · ·+ xn

k).(1.1)
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For reference, see [3, p.93]. If k = 2, it gives us the inequality between the arithmetic
and quadratic means.

If we take f(x) = ex for real x and each αi = 1/n, then

e
1
n

(x1+···+xn) ≤ 1
n

(ex1 + · · ·+ exn).

By putting yi = exi , we get the inequality between the arithmetic and geometric
means of n positive numbers via

y1 + y2 + · · ·+ yn

n
≥ n
√

y1y2 · · · yn

as a special case of Jensen’s inequality (see [5, p.64]).
Nesbitt’s Inequality in 1903 is as follows: The inequality

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2

holds for positive real numbers a, b, c. It is a well-known inequality with many proofs.
It can be proved by comparing the arithmetic and harmonic means, or by using the
arithmetic and geometric means, or by the Cauchy-Schwarz Inequality, and so on
(see [10]).

It is generalized to the Shapiro Inequality proposed by H. Shapiro in 1954 and it
is as follows: Let x1, · · · , xn be positive real numbers with n ∈ N. If n is even with
n ≤ 12, or n is odd with n ≤ 23, then

n∑

i=1

xi

xi+1 + xi+2
≥ n

2

where xn+1 = x1, xn+2 = x2 (see [2], [11], [12]).
Now, in this paper we make several modified forms of inequalities from Nesbitt’s

Inequality using power series and Cauchy-Schwarz Inequality.

2. Inequality via Power Series

C. Mortici [4] proved Nesbitt’s Inequality by using power series under the condi-
tion a + b + c = 1 without loss of generality and it is as follows:

Let a, b, c be positive real numbers with a + b + c = 1. Then, the inequality

a

1− a
+

b

1− b
+

c

1− c
≥ 3

2

holds. Now, we modify it to get the following proposition. First of all, we note that
when 0 < x < 1, we have power series expansion
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1
1− x

=
∞∑

k=0

xk.(2.1)

Proposition 2.1. Let a, b, c be positive real numbers with a + b + c = 1. Then, the
inequality

1
1− a

+
1

1− b
+

1
1− c

≥ 9
2

holds.

Proof. Since a, b, c are positive with a, b, c < 1, we have power series expansions

1
1− a

+
1

1− b
+

1
1− c

=
∞∑

k=0

ak +
∞∑

k=0

bk +
∞∑

k=0

ck.

These are convergent series. By applying (1.1),
∞∑

k=0

(
ak + bk + ck

3

)
≥

∞∑

k=0

(
a + b + c

3

)k

.

Therefore,

1
1− a

+
1

1− b
+

1
1− c

≥
∞∑

k=0

3 ·
(

1
3

)k

= 3 · 3
2

since a + b + c = 1. ¤

Corollary 2.2. Let a, b, c be positive real numbers with a + b + c = 1. Then, the
inequality

al

1− a
+

bl

1− b
+

cl

1− c
≥ 3 · 3

2
·
(

1
3

)l

holds for l ∈ N ∪ {0}.
By differentiating both sides of the equation (1.1) we get

1
(1− x)2

=
∞∑

k=1

kxk−1(2.2)

where 0 < x < 1 (see [6, p.149]). Hence, we get

Proposition 2.3. Let a, b, c be positive real numbers with a + b + c = 1. Then, the
inequality

1
(1− a)2

+
1

(1− b)2
+

1
(1− c)2

≥ 3 ·
(

3
2

)2

holds.
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Proof. By power series expansion in (2.2) and the inequality in (1.1),
1

(1− a)2
+

1
(1− b)2

+
1

(1− c)2

=
∞∑

k=1

kak−1 +
∞∑

k=1

kbk−1 +
∞∑

k=1

kck−1

=
∞∑

k=1

3k ·
(

ak−1 + bk−1 + ck−1

3

)
≥

∞∑

k=1

3k ·
(

a + b + c

3

)k−1

.

Hence,
1

(1− a)2
+

1
(1− b)2

+
1

(1− c)2
≥

∞∑

k=1

3k ·
(

1
3

)k−1

= 3 · 1
(1− 1

3)2
= 3 ·

(
3
2

)2

.

¤
For positive real numbers ai satisfying

∑n
i=1 ai = 1, we get the following.

Corollary 2.4. Let a1, · · · , an be positive real numbers with
∑n

i=1 ai = 1. Then,
the inequality

n∑

i=1

1
(1− ai)2

≥ n ·
(

n

n− 1

)2

holds.

Now, we want to generalize the above inequality. By differentiating both sides of
the equation (2.1) up to m− 1 times, we get

(m− 1)!
(1− x)m

=
∞∑

k=m−1

k(k − 1) · · · (k − (m− 2))xk−(m−1)(2.3)

where 0 < x < 1.

Theorem 2.5. Let a1, · · · , an be positive real numbers with
∑n

i=1 ai = 1. Then, the
inequality

n∑

i=1

1
(1− ai)m

≥ n ·
(

n

n− 1

)m

holds for any m ∈ N ∪ {0}.
Proof. For any ai ∈ (0, 1), we have by (2.3)

1
(1− ai)m

=
1

(m− 1)!

∞∑

k=m−1

k(k − 1) · · · (k − (m− 2))ai
k−(m−1).
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It is a convergent series. Hence,
n∑

i=1

1
(1− ai)m

=
n∑

i=1

1
(m− 1)!

∞∑

k=m−1

k(k − 1) · · · (k − (m− 2))ai
k−(m−1)

=
1

(m− 1)!

∞∑

k=m−1

k(k − 1) · · · (k − (m− 2))
n∑

i=1

ai
k−(m−1).

By using (1.1)
n∑

i=1

ai
k−(m−1) = n ·

n∑

i=1

ai
k−(m−1)

n

≥ n ·
(∑n

i=1 ai

n

)k−(m−1)

= n ·
(

1
n

)k−(m−1)

.

Therefore, we have
n∑

i=1

1
(1− ai)m

≥ n

(m− 1)!

∞∑

k=m−1

k(k − 1) · · · (k − (m− 2))
(

1
n

)k−(m−1)

=
n

(m− 1)!
· (m− 1)!
(1− 1/n)m

= n ·
(

n

n− 1

)m

by using power series in (2.3). ¤

Corollary 2.6. Let a1, · · · , an be positive real numbers with
∑n

i=1 ai = 1. Then,
the inequality

n∑

i=1

al
i

(1− ai)m
≥ n ·

(
n

n− 1

)m

·
(

1
n

)l

holds for any l, m ∈ N ∪ {0}.
We will make a modified form of the previous inequality by changing the term

1− ai in the denominator by 1− ak
i . First of all, a modified form of Proposition 2.1

is as follows:

Proposition 2.7. Let a, b, c be positive real numbers with a + b + c = 1. Then, the
inequality

1
1− a2

+
1

1− b2
+

1
1− c2

≥ 3 ·
(

32

32 − 1

)

holds.
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If we apply the method similar to Corollary 2.6, then we get the following.

Theorem 2.8. Let a1, · · · , an be positive real numbers with
∑n

i=1 ai = 1. Then, the
inequality

n∑

i=1

al
i

(1− ak
i )m

≥ n ·
(

nk

nk − 1

)m

·
(

1
nk

)l

holds for any l, m ∈ N ∪ {0} and k ∈ N.

3. Inequality via Cauchy-Schwarz Inequality

The Cauchy-Schwarz Inequality is very useful in showing inequalities and finite
version of it in Rn is as follows: For x1, · · · , xn, y1, · · · , yn ∈ R, n ∈ N,

(
n∑

i=1

x2
i

)
·
(

n∑

i=1

y2
i

)
≥

(
n∑

i=1

xiyi

)2

.

Equality holds when x = (x1, · · · , xn) is a multiple of y = (y1, · · · , yn).
F. Zejnulahi and Š. Arlanagić [8] states that for nonnegative real numbers a, b, c

satisfying a + b + c = 3, the inequalities

a2

b + 1
+

b2

c + 1
+

c2

a + 1
≥ 3

2
,(3.1)

a

b2 + 1
+

b

c2 + 1
+

c

a2 + 1
≥ 3

2
(3.2)

hold. Now, we modify (3.1) to get the following inequality.

Theorem 3.1. Let a, b, c be nonnegative real numbers with a + b + c = 1. Then, we
have the inequality

1
1 + a

+
1

1 + b
+

1
1 + c

≥ 9
4

(3.3)

and equality holds when a = b = c = 1/3.

Proof. By using the Cauchy-Schwarz Inequality, we have

((1 + a) + (1 + b) + (1 + c)) ·
(

1
1 + a

+
1

1 + b
+

1
1 + c

)
≥ (1 + 1 + 1)2.

Hence,

4
(

1
1 + a

+
1

1 + b
+

1
1 + c

)
≥ 9

and it implies the desired inequality. When we use the Cauchy-Schwarz Inequality,
equality holds if and only if√

1 + a

1/
√

1 + a
=

√
1 + b

1/
√

1 + b
=

√
1 + c

1/
√

1 + c
.
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Hence equality in (3.3) holds when a = b = c = 1/3. ¤
On the other hand, F. Zejnulahi and Š. Arlanagić [7] asked whether for nonneg-

ative real numbers a, b, c with a + b + c = 1, the inequality
a

b2 + 1
+

b

c2 + 1
+

c

a2 + 1
≥ 9

10
(3.4)

holds or not. We know that equality holds if a = b = c = 1/3. But, unfortunately
the inequality in 3.4 was disproved in [9].

Now, it is natural to ask whether for nonnegative real numbers a, b, c satisfying
a + b + c = 1, the inequality

1
1 + a2

+
1

1 + b2
+

1
1 + c2

≥ 3 · 9
10

holds or not. As we guess, it is not true.

Example 3.2. If we take a = 1/3, b = 2/3, c = 0, then
1

1 + a2
+

1
1 + b2

+
1

1 + c2
= 337/130 < 3 · 9

10
.

We determine a lower bound of 1/(1+a2)+1/(1+b2)+1/(1+c2) in the following
theorem.

Theorem 3.3. Let a, b, c be nonnegative real numbers with a + b + c = 1. Then, we
have the inequality

1
1 + a2

+
1

1 + b2
+

1
1 + c2

>
9
4
.(3.5)

Proof. By using the Cauchy-Schwarz Inequality, we have

((1 + a2) + (1 + b2) + (1 + c2))
(

1
1 + a2

+
1

1 + b2
+

1
1 + c2

)
≥ (1 + 1 + 1)2.

Hence, it holds that
1

1 + a2
+

1
1 + b2

+
1

1 + c2
≥ 9

a2 + b2 + c2 + 3
(3.6)

with equality if and only if a = b = c = 1/3.
On the other hand, we note that

a2 + b2 + c2 + 3 ≤ a + b + c + 3 = 1 + 3 = 4(3.7)

with equality instead of inequality only when one of a, b, c is 1 with other two zeros.
Hence, there are no nonnegative integers a, b, c satisfying the two equalities in

(3.6) and (3.7) at the same time. Hence the formula (3.5) with strict inequality
holds. ¤
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Finally, we get the minimum of 1/(1+a2)+1/(1+b2)+1/(1+c2) in the following
theorem by modifying the proof of (3.2) in [1].

Theorem 3.4. Let a, b, c be nonnegative real numbers with a + b + c = 1. Then, we
have the inequality

1
1 + a2

+
1

1 + b2
+

1
1 + c2

≥ 5
2

with equality when one of a, b, c is 1 and the other two are zeros.

Proof. Since a2 + 1 ≥ 2a, we have

1
1 + a2

= 1− a2

a2 + 1
≥ 1− a2

2a
= 1− a

2
.

Similaly we get
1

1 + b2
= 1− b

2
,

1
1 + c2

= 1− c

2
.

Therefore, we have
1

1 + a2
+

1
1 + b2

+
1

1 + c2
≥ 1 + 1 + 1− a + b + c

2
= 3− 1

2
=

5
2
.

Equality holds if one of a, b, c is 1 and the other two are zeros. ¤
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