DOI QR코드

DOI QR Code

A NOTE ON SPECIAL LAGRANGIANS OF COTANGENT BUNDLES OF SPHERES

  • Received : 2012.04.03
  • Accepted : 2012.06.22
  • Published : 2012.08.31

Abstract

For each submanifold X in the sphere $S^n$; we show that the corresponding conormal bundle $N^*X$ is Lagrangian for the Stenzel form on $T^*S^n$. Furthermore, we correspond an austere submanifold X to a special Lagrangian submanifold $N^*X$ in $T^*S^n$. We also discuss austere submanifolds in $S^n$ from isoparametric geometry.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. U. Abresch: Isoparametric hypersurfaces with four or six distinct principal curvatures. Necessary conditions on the multiplicities. Math. Ann. 264 (1983), no. 3, 283-302. https://doi.org/10.1007/BF01459125
  2. H. Anciaux: Special Lagrangian submanifolds in the complex sphere. Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), no. 2, 215-227. https://doi.org/10.5802/afst.1145
  3. V. Borrelli & C. Gorodski: Minimal Legendrian submanifolds of $S^{2n+1}$and absolutely area-minimizing cones. Differential Geom. Appl. 21 (2004), no. 3, 337-347. https://doi.org/10.1016/j.difgeo.2004.05.007
  4. E. Calabi: Meriques Kahleriennes et fibres holomorphes. Ann. Ec. Norm. Sup. 12 (1979), 269-294. https://doi.org/10.24033/asens.1367
  5. J. Dorfmeister & E. Neher: Isoparametric hypersurfaces, case g=6,m=1. Comm. Algebra 13 (1985), no. 11, 2299-2368. https://doi.org/10.1080/00927878508823278
  6. R. Harvey & B. Lawson: Calibrated geometries. Acta Math. 148 (1982), 47-157. https://doi.org/10.1007/BF02392726
  7. W. Hsiang & B. Lawson: Minimal submanifolds of low cohomogeneity. J. Differential Geometry 5 (1971), 1-38. https://doi.org/10.4310/jdg/1214429775
  8. N. Hitchin: Hyperkahler manifolds. Seminaire Bourbaki, Asterisque 206(1992) 137-166.
  9. M. Ionel & M. Min-Oo: Cohomogeneity One Special Lagrangian Submanifolds in the Deformed Conifold. [math/0504557]
  10. M. Kimura: A generalization of Cartan hypersurfaces. Proceedings of the Ninth International Workshop on Differential Geometry, 51-59, Kyungpook Nat'l. Univ., Taegu, 2005.
  11. S. Karigiannis & M. Min-Oo: Calibrated subbundles in noncompact manifolds of special holonomy. Ann. Global Anal. Geom. 28 (2005), no. 4, 371-394. https://doi.org/10.1007/s10455-005-1940-7
  12. J.H. Lee: Special Lagragnian Submanifolds in Cotangent Bundles. On progresss.
  13. R. Miyaoka: A new proof of the homogeneity of isoparametric hypersurfaces with (g;m) = (6; 1). Geometry and topology of submanifolds, X (Beijing/Berlin, 1999), 178-199, World Sci. Publ., River Edge, NJ, 2000.
  14. M.B. Stenzel: Ricci-flat metrics on the complexi¯cation of a compact rank one symmetric space. Manuscripta Math. 80 (1993), no. 2, 151-163. https://doi.org/10.1007/BF03026543
  15. R. Szoke: Complex structures on tangent bundles of Riemannian manifolds. Math. Ann. 291 (1991), 409-428. https://doi.org/10.1007/BF01445217