DOI QR코드

DOI QR Code

Integrity Evaluation for 3D Cracked Structures(I)

3차원 균열을 갖는 구조물에 대한 건전성 평가(I)

  • Lee, Joon-Seong (Department of Mechanical System Engineering, Kyonggi University)
  • 이준성 (경기대학교 기계시스템공학과)
  • Received : 2012.05.11
  • Accepted : 2012.08.09
  • Published : 2012.08.31

Abstract

Three Dimensional finite element method (FEM) was used to obtain the stress intensity factor for subsurface cracks and surface cracks existing in inhomogeneous materials. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model. Nodes are generated by the bubble packing, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze interaction effects of two dissimilar semi-elliptical cracks in a plate subjected to uniform tension.

3차원 유한요소법은 구조물에 존재하는 표면균열과 내재균열들의 응력확대계수를 구하는데 이용되어 진다. 기하모델, 즉 솔리드모델은 3차원 균열들을 포함하고 있다. 국부적인 절점밀도가 선택되어 지면 자동적으로 기하모델 영역에 중첩되어 지며 절점은 버블패깅 방법에 의해 생성되어지고 10절점 사변형 솔리드요소는 데라우니 삼각화 기술에 의해 생성하였다. 시스템의 정확도와 효용성을 체크하기 위해 인장하중을 받는 평판에 하나의 균열이 존재하는 경우의 응력확대계수를 구해 Raju-Newnam식과 비교하여 5%이내의 차이를 보였다. 또한, 인장하중을 받는 평판에 두개 균열이 존재하는 경우의 해석을 통해 상호 간섭 효과를 분석하였다.

Keywords

References

  1. Raju, I.S. and Newman, J.C., "Stress Intensity Factors for a Wide Range of Semi-Elliptical Surface Cracks in Finite Thickness Plates," Engineering Fracture Mechanics, Vol. 11, pp. 817-829, 1979. https://doi.org/10.1016/0013-7944(79)90139-5
  2. Isida, M., Yoshida, T. and Noguchi, H., "Tension of Finite-Thickness Plate with a Pair of Semi-Elliptical Surface Cracks," Engineering Fracture Mechanics, Vol. 35, pp. 961-965, 1990. https://doi.org/10.1016/0013-7944(90)90125-Z
  3. Shah, R.C. and Kobayashi, A.S., "Stress Intensity Factor for an Elliptical Crack Under Arbitrary Normal Loading, Engineering Fracture Mechanics, Vol. 3, pp. 71-96, 1971. https://doi.org/10.1016/0013-7944(71)90052-X
  4. J.S. Lee, "Automated CAE System for Three-Dimensional Complex Geometry", Doctoral Thesis, The University of Tokyo, 1995.
  5. S.S. Choi, "A Study on Probabilistic Fatigue Crack Propagation Model in Mg-Al-Zn Alloys under Maximum Load Conditions (III)", Proceedings of the KAIS Fall Conference, The Korea Academia-Industrial cooperation Society. Semiannual, pp. 757-760, 2011.
  6. H.J. Lee and J.S. Lee, "Automatic Mesh Generation System for FE Analysis of 3D Crack," J. of the Korea Academia-Industrial cooperation Society, Vol. 10, No. 9,pp. 2183-2188, 2009. https://doi.org/10.5762/KAIS.2009.10.9.2183
  7. S.H. Lo, A New Mesh Generation Scheme for Arbitrary Planar Domains, Int. J. of Numerical Methods in Engineering, 21, pp. 1403-1426, 1985. https://doi.org/10.1002/nme.1620210805
  8. T.C. Woo and T. Thomasma, An Algorithm for Generating Solids Elements n Objects with Holes, Computers & Structures, 18, pp. 342-353, 1984.
  9. J.S. Park, "Finite Element Analysis with ANSYS", Info-Tech Corea, 2011.
  10. J.C. Cavendish, D.A. Field and W.H. Frey., "An approach to Automatic Three-Dimensional Finite Element Mesh Generation," International Journal for Numerical Methods in Engineering, Vol. 21, pp. 329-347, 1985. https://doi.org/10.1002/nme.1620210210