DOI QR코드

DOI QR Code

국소방출방식 개념의 대향류 확산화염에서 CO2 소화효과에 관한 수치해석 연구

A Numerical Study on the Extinguishing Effects of CO2 in Counterflow Diffusion Flames with the Concept of Local Application System

  • Mun, Sun-Yeo (Dept. of Fire & Disaster Prevention, Daejeon University) ;
  • Park, Chung-Hwa (Dept. of Fire & Disaster Prevention, Daejeon University) ;
  • Hwang, Cheol-Hong (Dept. of Fire & Disaster Prevention, Daejeon University) ;
  • Oh, Chang-Bo (Dept. of Safety Engineering, Pukyong National University)
  • 투고 : 2012.06.20
  • 심사 : 2012.08.13
  • 발행 : 2012.08.31

초록

소화약제의 국소방출방식 개념이 적용될 수 있는 대향류 확산화염을 대상으로 $CO_2$ 소화약제의 소화기구를 재조명하기 위한 연구가 시도되었다. 이를 위해 연료 또는 공기류에 $CO_2$가 첨가된 낮은 총괄신장율의 $CH_4$/air 대향류 확산화염이 상세반응을 이용한 수치해석을 통해 검토되었다. 첨가된 $CO_2$를 포함한 복사 참여 화학종의 복사 열손실을 고려하기 위하여 optically thin model(OTM)이 적용되었다. 주요 결과로서, 공기류에 첨가된 $CO_2$의 소화농도 예측결과는 문헌에 보고된 실험결과를 적절하게 예측하고 있으나, 연료류에 첨가된 경우 다소 과소 예측된 결과를 확인하였다. 소화효과에 대한 정량적 분석을 위하여 가상의 소화약제의 개념이 도입되었다. $CO_2$ 소화효과의 분석을 통해 총괄신장율($a_g$)에 따른 순수 희석효과, 복사 열손실 및 열용량에 의한 열적효과 그리고 $CO_2$의 연쇄반응 억제를 통한 화학적 효과의 정량적 기여도를 구체적으로 확인할 수 있었다.

The suppression mechanisms of carbon dioxide ($CO_2$) as a representative fire suppression agent were revisited using a counterflow diffusion flame which could be applied the concept of a local application system. To end this, the low strain rate $CH_4$/air counterflow diffusions with $CO_2$ addition in either fuel or oxidizer stream were examined numerically using detailed-kinetic chemistry. Radiative heat loss due to radiating gas species including $CO_2$ added was considered by the optically thin model (OTM). As a result, the critical $CO_2$ volume fractions in the oxidizer stream required to extinguish the flame were in good agreement with the experimental data reported in the literature, while somewhat under-prediction was observed with $CO_2$ added in the fuel stream. The surrogate agents were adopted to estimate the quantitative contribution with changing in global strain rate ($a_g$) on the flame extinguishment among pure dilution effect, thermal effects including radiation heat loss and chemical effect due to the $CO_2$ fire suppression agent.

키워드

참고문헌

  1. C. H. Hwang, C. E. Lee and J. H. Kim, "Flame Blowout Limits of Landfill Gas Mixed Fuels in a Swirling Nonpremixed Combustor", Energy and Fuels, Vol. 22, No. 5, pp. 2933-2940 (2008). https://doi.org/10.1021/ef8000407
  2. H. Liu, H. Guo, G. J. Smallwood and O. L. Gulder, "The Chemical Effects of Carbon Dioxide as an Additive in an Ethylene Diffusion Flame: Implications for Soot and NOx Formation", Combustion and Flame, Vol. 125, No. 1-2, pp. 778-787 (2001). https://doi.org/10.1016/S0010-2180(00)00241-8
  3. C. H. Hwang, C. B. Oh and C. E. Lee, "Effects of $CO_{2}$ Dilution on the Interactions of a $CH_{4}$-air Nonpremixed Jet Flame with a Single Vortex", International Journal of Thermal Sciences, Vol. 48, No. 7, pp. 1423-1431 (2009). https://doi.org/10.1016/j.ijthermalsci.2008.11.003
  4. M. Bundy, A. Hamins and K. Y. Lee, "Suppression Limits of Low Strain Rate Nonpremixed Mixed Methane Flames", Combustion and Flame, Vol. 133, No. 3, pp. 299-310 (2003). https://doi.org/10.1016/S0010-2180(03)00012-9
  5. J. S. T'ien, "Diffusion Flame Extinction at Small Stretch Rates: The Mechanism of Radiative Loss", Combustion and Flame, Vol. 65, No. 1, pp. 31-34 (1986). https://doi.org/10.1016/0010-2180(86)90069-6
  6. K. Maruta, M. Yoshida, H. Guo, Y. Ju and T. Niioka, "Extinction of Low-stretched Diffusion Flame in Microgravity", Combustion and Flame, Vol. 112, No. 1-2, pp. 181-187 (1998). https://doi.org/10.1016/S0010-2180(97)81766-X
  7. D. J. Hwang, J. Park, C. B. Oh, K. H. Lee and S. I. Keel, "Numerical Study on NO Formation in $CH_{4}-O_{2}-N_{2}$ Diffusion Flame Diluted with $CO_{2}$", International Journal of Energy Research, Vol. 29, No. 2, pp. 107-120 (2005). https://doi.org/10.1002/er.1043
  8. C. E. Lee, S. R. Lee, J. W. Han and J. Park, "Numerical Study on Effect of $CO_{2}$ Addition in Flame Structure and NOx Formation of $CH_{4}$-air Counterflow Diffusion Flame", International Journal of Energy Research, Vol. 25, No. 4, pp. 343-354 (2001). https://doi.org/10.1002/er.686
  9. J. Park, J. S. Kim, J. O. Chung, J. H. Yun and S. I. Keel, "Chemical Effects of Added $CO_{2}$ on the Extinction Characteristics of $H_{2}$/CO/$CO_{2}$ Syngas Diffusion Flames", International Journal of Hydrogen Energy, Vol. 34, No. 20, pp. 8756- 8762 (2009). https://doi.org/10.1016/j.ijhydene.2009.08.046
  10. D. X. Du, R. J. Axelbaum and C. K. Law, "The Influence of Carbon Dioxide and Oxygen as Additives on Soot Formation in Diffusion Flames", Proceedings of the Combustion Institute, Vol. 23, No. 1, pp. 1501-1507 (1991). https://doi.org/10.1016/S0082-0784(06)80419-4
  11. A. E. Lutz, R. J Kee, J. F. Grcar, and F. M. Rupley, "OPPDIF: A Fortran Program for Computing Opposedflow Diffusion Flame", SAND 96-8243 (1997).
  12. R. J. Kee, F. M. Rupley and J. A. Miller, "A Fortran Chemical Kinetic Package for The Analysis of Gas Phase Chemical Kinetics", SAND 89-8009B (1989).
  13. R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin and J. A. Miller, "A Fortran Computer Code Package for the Evaluation of Gas Phase Multicomponent Transport Properties", SAND86- 8246 (1986).
  14. C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach and M. Goldenburg, http://www.me.berkeley.edu/gri_mech/ (1999).
  15. Y. Ju, H. Guo, K. Maruta and F. Liu, "On the Extinction Limit and Flammability Limit of Nonadiabatic Stretched Methane-air Premixed Flames", Journal of Fluid Mechanics, Vol. 342, pp. 315-334 (1997). https://doi.org/10.1017/S0022112097005636
  16. A. Hamins, M. Bundy, C. B. Oh and S. C. Kim, "Effect of Buoyancy on the Radiative Extinction Limit of Low-Strain Rate Nonpremixed Methane-air Flames", Combustion and Flame, Vol. 151, No. 1-2, pp. 225-234 (2007). https://doi.org/10.1016/j.combustflame.2007.05.011
  17. C. B. Oh, A. Hamins, M. Bundy and J. Park, "The Twodimensional Structure of Low Strain Rate Counterflow Nonpremixed Methane Flames in Normal and Microgravity", Combustion Theory and Modelling, Vol. 12, No. 2, pp. 283-302 (2008). https://doi.org/10.1080/13647830701642201
  18. C. B. Oh, E. J. Lee and J. Park, "Effects of the Burner Diameter on the Flame Structure and Extinction Limit of Counterflow Nonpremixed Flames", International Journal of Spray and Combustion Dynamics, Vol. 2, No. 3, pp. 199-218 (2010). https://doi.org/10.1260/1756-8277.2.3.199
  19. A. Hamins, D. Trees, K. Seshadri and H. K. Chelliah, "Extinction of Nonpremixed Flames with Halogenated Fire Suppressants", Combustion and Flame, Vol. 99, No. 2, pp. 221-230 (1994). https://doi.org/10.1016/0010-2180(94)90125-2

피인용 문헌

  1. Effect of Radiation Models on the Suppression Limits in Counterflow Methane/Air Diffusion Flames vol.28, pp.3, 2014, https://doi.org/10.7731/KIFSE.2014.28.3.020