DOI QR코드

DOI QR Code

사계성 딸기 '고하' 조직배양묘의 대량증식 시 생물반응기 내 공기주입량에 따른 생육 특성

Growth Characteristics of in Vitro Mass Propagated Plantlets of Ever-bearing Strawberry 'Goha' according to Aeration Rate in Bioreactor

  • 김혜진 (국립식량과학원 고령지농업연구센터) ;
  • 이종남 (국립식량과학원 고령지농업연구센터) ;
  • 김기덕 (국립식량과학원 고령지농업연구센터) ;
  • 임주성 (국립식량과학원 고령지농업연구센터) ;
  • 임학태 (강원대학교 생명건강공학전공) ;
  • 용영록 (강릉원주대학교 식물생명과학과)
  • Kim, Hye-Jin (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Lee, Jong-Nam (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Kim, Ki-Deog (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Im, Ju-Sung (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Lim, Hak-Tae (Department of Bio-Health Technology, Kangwon National University) ;
  • Yeoung, Young-Rok (Department of Plant Science, Gangneung-Wonju National University)
  • 투고 : 2012.03.14
  • 심사 : 2012.05.11
  • 발행 : 2012.08.30

초록

본 실험은 사계성 딸기의 무병묘 생산을 위한 생물반응기 배양 시 공기주입량에 따른 생육특성을 비교하고, 적정 공기주입량을 구명하기 위해 실시하였다. 생물반응기 내 공기주입량은 0.1vvm, 0.2vvm, 0.3vvm 및 0.4vvm 등 4 수준으로 처리하였다. 공기주입량 0.2vvm에서 초장이 9.03cm로 가장 길었으며, 엽수는 40.4개, 생체중은 6,106mg으로 타처리구에 비해 생육이 왕성하였다. 생물반응기 배양기간이 길어짐에 따라 잎, 뿌리 등이 점진적으로 많이 발생하였으며, 유식물체의 생체중도 급격히 늘어났으며, 배양 6주째에는 신초수가 주당 10.4개 발생하였으며 완전한 하나의 독립된 식물체로 발달되었다. 그리고 생물반응기 내의 공기는 0.2vvm으로 지속적으로 공급해주며, 최소 6주간 배양해야 완전한 식물체로 성장하였다.

This study was conducted to determine the optimal aeration rate for mass propagation of ever-bearing strawberry by bioreactor culture. The aeration rate was treated in four levels: 0.1 vvm (air volume/medium volume/min), 0.2 vvm, 0.3 vvm, and 0.4 vvm. In 0.2 vvm conditions, shoot length was the longest at 9.03 cm in bioreactor culture, leave numbers were 40.4 ea and fresh weight was 6,106 mg. Plant growth rate at 0.2 vvm condition was faster than other treatments. In the aeration condition, 0.2 vvm was most effective to increase aerial part growth and to decrease medium consumption. As the culture periods increased, the fresh weight also increased rapidly. After six weeks of cultivation, shoots were emerged with 10.4 ea per plantlet, resulting in developing a complete plant. As a result, the bioreactor culture system for mass propagation of strawberry is required to continuously supply the air by 0.2 vvm speed and cultivate at least for six weeks.

키워드

참고문헌

  1. Akita, M. 2000. Bioreactor culture of plant organs, p. 129-138. In: R.E. Spier, B. Griffiths, and A.H. Scragg (eds.). The encyclopaedia of cell technology. John Wiley & Sons, Inc., New York.
  2. Akita, M. and S. Takayama. 1994a. Induction and development of potato tubers in a jar fermentor. Plant Cell Tiss. Org. Cult. 36: 177-182. https://doi.org/10.1007/BF00037717
  3. Akita, M. and S. Takayama. 1994b. Stimulation of potato (Solanum tuberosum L.) tuberization by semi-continuous liquid medium surface level control. Plant Cell Rep. 13:184-187.
  4. Akula, A., D. Becker, and M. Bateson. 2000. High-yielding repetitive somatic embryogenesis and plant recovery in a selected tea clone, "TRI-2025", by temporary immersion. Plant Cell Rep. 19:1140-1145. https://doi.org/10.1007/s002990000239
  5. Bhatt, I.D. and U. Dhar. 2000. Micropropagation of Indian wild strawberry. Plant Cell Tiss. Org. Cult. 60:83-88. https://doi.org/10.1023/A:1006471815566
  6. Cazzulino, D., H. Pederson, and C.K. Chin. 1991. Bioreactors and image analysis for scale-up and plant propagation, p. 147-177. In: I.K. Vasil (ed.). Cell culture and somatic cell genetics of plants. Academic Press, San Diego, CA.
  7. Doran, P.M. 1993. Design of reactors for plant cells and organs, p. 116-169. In: A. Feichter (ed.). Bioprocess design control, Vol. 48. Springer-Verlag, Berlin.
  8. Doran, P.M. 1995. Bioprocess engineering principles. Academic Press Ltd., New York.
  9. Escalona, M., J.C. Lorenzo, B.L. Gonzales, M. Daquinta, C.G. Borroto, J.I. Gozales, and Y. Desjardin. 1999. Pineapple (Ananas comosus L. Merr.) micropropagation in temporary immersion system. Plant Cell Rep. 18:743-748. https://doi.org/10.1007/s002990050653
  10. Etienne, H., M. Lartaud, N. Michaux-Ferrière, M.P. Carron, M. Berthouly, and C. Teisson. 1997. Improvement of somatic embryogenesis in Hevea Brasiliensis (Mull. Arg.) using the temporary immersion technique. In Vitro Cell Dev. Biol. Plant. 33:81-87. https://doi.org/10.1007/s11627-997-0001-2
  11. Garcia-Ochoa, F. and E. Gomez. 2008. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. p. 154-176.
  12. Hegarty, P.K., N.J. Smart, H. Scragg, and M.W. Fowler. 1986. The aeration of Catharanthus roseus L.G. Don suspension cultures in airlift bioreactors: The inhibitory effect at high aeration rates on culture growth. J. Exp. Bot. 37:1911-1920. https://doi.org/10.1093/jxb/37.12.1911
  13. Kim, H.J., J.N. Lee, K.D. Kim, J.S. Im, H.T. Lim, and Y.R. Yeoung. 2011. Suitable hormone-free medium for in vitro mass propagation via bioreactor culture of ever-bearing strawberry. J. Plant Biotechnol. 38:221-227. https://doi.org/10.5010/JPB.2011.38.3.221
  14. Kirschbaum, D.S., D.J. Candtliffe, N.L. Shaw, and J.R. Liu. 2004. Direct adventitious shoot formation on seedling radicles in seed cultures of strawberry. J. Plant Biol. 47:160-162. https://doi.org/10.1007/BF03030647
  15. Lee, J.N., H.J. Kim, K.D. Kim, Y.S. Kwon, H.T. Lim, and Y.R. Yeoung. 2010a. In vitro mass propagation and economic effects of bioreactor culture in ever-bearing strawberry 'Goha'. Kor. J. Hort. Sci. Technol. 28:845-849.
  16. Lee, J.N., H.J. Kim, K.D. Kim, Y.S. Kwon, Y.R. Yeoung, and H.T. Lim. 2010b. Appropriate in vitro culture conditions of growing medium for new ever-bearing strawberry 'Goha'. Kor. J. Hort. Sci. Technol. 28:1051-1056.
  17. Lorenzo, J.C., B.L. Gonzales, M. Escalona, C. Teisson, P. Espinosa, and C. Borroto. 1998. Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tiss. Org. Cult. 39:197-200.
  18. Passey, A.J., K.J. Barrett, and D.J. James. 2003. Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria ${\times}$ ananssa Duch.) using a range of explants types. Plant Cell Rep. 21:397-401.
  19. Scragg, A.H. 1992. Large-scale plant cell culture: Methods, applications and products. Current Option Biotech. 3:105-109. https://doi.org/10.1016/0958-1669(92)90136-7
  20. Takayama, S. 2002. Practical aspects of bioreactor application in mass propagation of plants. 1st Intl. Symp. Liquid Systems Vitro Mass Prop. Plants. p. 60-62. (Abstr.)
  21. Takayama, S. and M. Akita. 1994. The types of bioreactors used for shoots and embryos. Plant Cell Tiss. Org. Cult. 39:147-156. https://doi.org/10.1007/BF00033922
  22. Takayama, S. and M. Akita. 1998. Bioreactor techniques for large-scale culture of plant propagules. Adv. Hort. Sci. 12:93-100.
  23. Takayama, S. and M. Akita. 2008. Plant tissue culture engineering, p. 83-100. In: S. Dutta Gupta and Y. Ibaraki (eds.). Bioengineering aspects of bioreactor application in plant propagation. Springer-Verlag, Berlin.
  24. Takayama, S., Y. Arima, and M. Akita. 1986. Mass propagation of plants by fermentor culture techniques. 6th Intl. Congr. Plant Tissue Cell Cult. p. 449. (Abstr.)
  25. Teisson, C. and D. Alvard. 1995. A new concept of plant in vitro cultivation liquid medium: Temporary immersion, p. 105-110. In: M. Terzi, R. Cella, and A. Falarigna (eds.). Current issues in plant molecular and cellular biology. Kluwer Acad. Publ., Dordrecht.
  26. Teisson, C., D. Alvard, B. Berthouly, F. Cote, J.V. Escalant, H. Etienne, and M. Lartaud. 1996. Simple apparatus to perform plant tissue culture by temporary immersion. Acta Hort. 40:521-526.
  27. Yu, W.C., P.J. Joyce, D.C. Cameron, and B.H. McCown. 2000. Sucrose utilization during potato microtuber growth in bioreactors. Plant Cell Rep. 19:407-413. https://doi.org/10.1007/s002990050748
  28. Ziv, M. 2005. Simple bioreactors for mass propagation of plants. Plant Cell Tiss. Org. Cult. 81:277-285. https://doi.org/10.1007/s11240-004-6649-y

피인용 문헌

  1. Growth Inhibition of In Vitro Plantlets and Improvement of Survival Rate of Acclimated Plant of Strawberry according to Polyethylene Glycol during Bioreactor Culture vol.33, pp.6, 2015, https://doi.org/10.7235/hort.2015.15020
  2. Optimal Culture Conditions for the Shoot Growth of Freesia 'Shiny Gold' during Bioreactor Culture vol.30, pp.6, 2017, https://doi.org/10.7732/kjpr.2017.30.6.699