DOI QR코드

DOI QR Code

Detection of Partial Discharges by a Monopole Antenna in Insulation Oil

모노폴 안테나를 이용한 유중 부분방전의 검출

  • Park, Dae-Won (Division of Electrical and Electronics Engineering, Korea Maritime University) ;
  • Lee, Jung-Yoon (Division of Electrical and Electronics Engineering, Korea Maritime University) ;
  • Kil, Gyung-Suk (Division of Electrical and Electronics Engineering, Korea Maritime University)
  • 박대원 (한국해양대학교 전기전자공학부) ;
  • 이정윤 (한국해양대학교 전기전자공학부) ;
  • 길경석 (한국해양대학교 전기전자공학부)
  • Received : 2012.07.30
  • Accepted : 2012.08.20
  • Published : 2012.09.01

Abstract

This paper dealt with the measurement and analysis of electromagnetic waves radiated from a partial discharge (PD) source in insulation oil to apply condition monitoring of oil-immersed transformers. Two types of narrow-band monopole antennas with the resonant frequency of a 500 MHz and a 1 GHz were designed and fabricated. Also, a needle-plane electrode system was manufactured to simulate PDs and the curvature radius of the needle is 10 ${\mu}m$ and the diameter of the plane is 60 mm. Electromagnetic wave was measured by the PD measurement system with the monopole antennas. Detection sensitivity of the fabricated antenna was compared for the same PD magnitude; 620 $mV_{peak}$ for the 500 MHz antenna and 960 $mV_{peak}$ for the 1 GHz antenna to the PD magnitude of 74 pC. Consequently, the 1 GHz monopole antenna is more effective to detect PDs in oil-immersed transformers.

Keywords

References

  1. P. Cichecki, P. Agoris, S. Meijer, E. Gulski, and J. J. Smit, 15th Int. Symp. on High Voltage Engineering, T7 (2007).
  2. L. E. Lundgarrd, IEEE Electr. Insul. Mag., 8, 34 (1992). https://doi.org/10.1109/57.156943
  3. H. Kawada, M. Honda, T. Inoue, and T. Amemiya, IEEE Transactions on Power Apparatus and Systems, PAS-103, 422 (1984). https://doi.org/10.1109/TPAS.1984.318261
  4. S. Meijer, P. D. Agoris, J. J. Smit, M. D. Judd, and L. Yang, IEEE Int. Symp. on Electrical Insulation, 416 (2006).
  5. M. Pompili, C. Mazzetti, and R. Bartnikas, IEEE Trans. Dielectr. Electr. Insul., 12, 395 (2005). https://doi.org/10.1109/TDEI.2005.1430407
  6. A. S. Farag, M. H. Shewhdi, X. Jin, C. Wang, T. C. Cheng, X. Dong, S. Gao, W. Jing, and Z. Wang, Electr. Power Syst. Res., 50, 47 (1999). https://doi.org/10.1016/S0378-7796(98)00157-6
  7. M. D. Judd, O. Farish, and B. F. Hampton, IEEE Trans. Dielectr. Electr. Insul., 3, 213 (1996). https://doi.org/10.1109/94.486773
  8. B. Fruth and L. Niemeyer, IEEE Trans. Dielectr. Electr. Insul., 23, 59 (2000).
  9. S. Coenen, S. Tenbohlen, S. M. Markalous, and T. Strehl, IEEE Trans. Dielectr. Electr. Insul., 15, 1553 (2008). https://doi.org/10.1109/TDEI.2008.4712657
  10. R. Sarathi, A. V. Giridhar, and K. Sethupathi, IEEE Trans. Dielectr. Electr. Insul., 18, 707 (2011). https://doi.org/10.1109/TDEI.2011.5931056
  11. G. S. Kil, I. K. Kim, D. W. Park, S. Y. Choi, and C. Y. Park, Current Appl. Phys., 9, 296 (2009). https://doi.org/10.1016/j.cap.2008.01.018
  12. W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, 2nd Ed. (John Wiley & Sons, New York, 1998) p. 8.
  13. G. S. Kil, S. W. Kim, D. W. Park, S. J. Kim, and J. M. Song, J. KIEEME, 23, 53 (2010).
  14. A. Rodrigo, P. Llovera, V. Fuster, and A. Quijano, IEEE Trans. Dielectr. Electr. Insul., 18, 1798 (2011). https://doi.org/10.1109/TDEI.2011.6032852