Abstract
In this paper we propose a real-time moving object tracking method on a smart phone camera. By considering the limit of non-learning approach on low-performance platforms, we use the sliding-window detection technique based on histogram features. We solve the problem of the time-consuming histogram computation on each sub-window by adapting the integral histogram. For additional speed and tracking performance, we propose a new adaptive bin method. From the experiments on our dataset, we achieved high speed performance demonstrating 34~63 frames per second.
본 논문에서는 스마트폰 카메라에서 움직이는 물체의 실시간 추적 방법을 제안한다. 사양이 낮은 플랫폼에서의 비-학습 기반 제약을 고려하여 히스토그램 특징 기반의 슬라이딩 윈도우 검출 기법을 사용한다. 각 부분 윈도우에 대한 히스토그램의 계산 시간문제는 적분 히스토그램을 통해 해결한다. 추가적인 속도개선과 성능향상을 위해 적응적 빈 방법을 제안한다. 자체 수집한 데이터에 대한 실험을 통해 우리는 초당 34~63프레임 수준의 높은 처리속도를 달성하였다.