Effect of Buddleja officinalis on the Indoxyl Sulfate-induced Inhibition of Cell Proliferation in HK-2 Cells

HK-2 세포에서 indoxyl sulfate로 유도된 세포증식억제에 대한 밀몽화의 효과

  • Park, Hyoung-Kwun (Department of Pathology, College of Korean Medicine, Wonkwang University) ;
  • Ju, Sung-Min (Department of Pathology, College of Korean Medicine, Wonkwang University) ;
  • Kang, Min-Soo (Department of Pathology, College of Korean Medicine, Wonkwang University) ;
  • Jeon, Byung-Hun (Department of Pathology, College of Korean Medicine, Wonkwang University)
  • 박형권 (원광대학교 한의과대학 병리학교실) ;
  • 주성민 (원광대학교 한의과대학 병리학교실) ;
  • 강민수 (원광대학교 한의과대학 병리학교실) ;
  • 전병훈 (원광대학교 한의과대학 병리학교실)
  • Received : 2012.07.26
  • Accepted : 2012.08.16
  • Published : 2012.08.25

Abstract

The flowers and leaves buds of Buddleja officinalis are used to treat eye troubles, hernia, gonorrhea and liver troubles in Asia. The present study investigated the effect of aqueous extract of Buddleja officinalis (ABO) on indoxyl sulfate (IS)-induced inhibition of cell proliferation in HK-2 cells. The HK-2 cells were incubated with 5 mM IS 5 mM in the absence or presence of ABO (2, 5, 10, 20 ${\mu}g/ml$) for 24 hr. The effect of ABO on IS-treated HK-2 cells was investigated by using MTT assay, flow cytometric analysis and Western blot. IS-induced proliferation inhibition was recovered dose-dependently by treatment with ABO. ABO reduced S and G2/M phase cell cycle arrest induced by IS. Recovery effect of ABO on inhibition of cell proliferation by IS is related to the decrease of p21 expression. Taken together, these results suggest that recovery effect of ABO on proliferation of IS-treated HK-2 cells be associated with cell cycle progression through down-regulation of p21 levels.

Keywords

References

  1. Miyazaki, T., Ise, M., Seo, H., Niwa, T. Indoxyl sulfate increases the gene expression of TGF-${\beta}1$, TIMP-1 and pro-$\alpha$ (I) collagen in uremic rat kidneys. Kidney Int. Suppl. 63: S15-S22, 1997.
  2. Niwa, T., Ise, M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J. Lab. Clin. Med. 124: 96-104, 1994.
  3. Niwa, T., Ise, M., Miyazaki, T. Progression of glomerular sclerosis in experimental uremic rats by administration of indole, aprecursor of indoxyl sulfate. Am. J. Nephrol. 14: 207-212, 1994. https://doi.org/10.1159/000168716
  4. Enomoto, A., Takeda, M., Tojo, A., Sekine, T., Cha, S.H., Khamdang, S., Takayama, F., Aoyama, I., Nakamura, S., Endou, H., Niwa, T. Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J. Am. Soc. Nephrol. 13: 1711-1720, 2002. https://doi.org/10.1097/01.ASN.0000022017.96399.B2
  5. Motojima, M., Hosokawa, A., Yamato, H., Muraki, T., Yoshioka, T. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-${\kappa}B$ and free radical in proximal tubular cells. Kidney Int. 63: 1671-1680, 2003. https://doi.org/10.1046/j.1523-1755.2003.00906.x
  6. Lekawanvijit, S., Adrahtas, A., Kelly, D.J., Kompa, A.R., Wang, B.H., Krum, H. Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes? Eur. Heart J. 31: 1771-1779, 2010. https://doi.org/10.1093/eurheartj/ehp574
  7. Tumur, Z., Shimizu, H., Enomoto, A., Miyazaki, H., Niwa, T. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation. Am. J. Nephrol. 31: 435-441, 2010. https://doi.org/10.1159/000299798
  8. Muteliefu, G., Enomoto, A., Niwa, T. Indoxyl sulfate promotes proliferation of human aortic smooth muscle cells by inducing oxidative stress. J. Ren. Nutr. 19: 29-32, 2009. https://doi.org/10.1053/j.jrn.2008.10.014
  9. Shimizu, H., Hirose, Y., Nishijima, F., Tsubakihara, Y., Miyazaki, H. ROS and PDGF-$\beta$ receptors are critically involved in indoxyl sulfate actions that promote vascular smooth muscle cell proliferation and migration. Am. J. Physiol. Cell Physiol. 297: C389-C396, 2009. https://doi.org/10.1152/ajpcell.00206.2009
  10. Adijiang, A., Goto, S., Uramoto, S., Nishijima, F., Niwa, T. Indoxyl sulphate promotes aortic calcification with expression of osteoblastspecific proteins in hypertensive rats. Nephrol. Dial. Transplant 23: 1892-1901, 2008. https://doi.org/10.1093/ndt/gfm861
  11. Muteliefu, G., Enomoto, A., Jiang, P., Takahashi, M., Niwa, T. Indoxyl sulphate induces oxidative stress and the expression of osteoblastspecific proteins in vascular smooth muscle cells. Nephrol. Dial. Transplant 24: 2051-2058, 2009. https://doi.org/10.1093/ndt/gfn757
  12. Taki, K., Tsuruta, Y., Niwa, T. Indoxyl sulfate and atherosclerotic risk factors in hemodialysis patients. Am. J. Nephrol. 27: 30-35, 2007. https://doi.org/10.1159/000098542
  13. Shimizu, H., Bolati, D., Adijiang, A., Enomoto, A., Nishijima, F., Dateki, M., Niwa, T. Senescence and dysfunction of proximal tubular cells are associated with activated p53 expression by indoxyl sulfate. Am. J. Physiol. Cell Physiol. 299: C1110-1117, 2010. https://doi.org/10.1152/ajpcell.00217.2010
  14. Shimizu, H., Bolati, D., Adijiang, A., Muteliefu, G., Enomoto, A., Nishijima, F., Dateki, M., Niwa, T.. NF-${\kappa}B$ plays an important role in indoxyl sulfate-induced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells. Am J. Physiol. Cell Physiol. 301: C1201-1212, 2011. https://doi.org/10.1152/ajpcell.00471.2010
  15. Kawakami, T., Inagi, R., Wada, T., Tanaka, T., Fujita, T., Nangaku, M. Indoxyl sulfate inhibits proliferation of human proximal tubular cells via endoplasmic reticulum stress. Am. J. Physiol. Renal Physiol. 299: F568-576. 2010. https://doi.org/10.1152/ajprenal.00659.2009
  16. 중화인민공화국위생부약전위원회. 중화인민공화국약전, p 291, 1995.
  17. 강소신의학원. 중약대사전, 서울, 정담, pp 1904-1906, 1998.
  18. Blondelle, S.E., Houghten, R.A. Designs of model amphipathic peptides having potent antimicrobial activities. Biochem. 31: 12688-12694, 1992. https://doi.org/10.1021/bi00165a020
  19. Piao, M.S., Kim, M.R., Lee, D.G., Park, Y., Hahm, K.S., Moon, Y.H., Woo, E.R. Antioxidative constituents from Buddleja officinalis. Arch. Pharm. Res. 26: 453-457, 2003. https://doi.org/10.1007/BF02976861
  20. Lee, D.H., Ha, N., Bu, Y.M., Choi, H.I., Park, Y.G., Kim, Y.B., Kim, M.Y., Kim, H. Neuroprotective effect of Buddleja officinalis extract on transient middle cerebral artery occlusion in rats. Biol. Pharm. Bull. 29: 1608-1612, 2006. https://doi.org/10.1248/bpb.29.1608
  21. 김호철. 밀몽화의 신경보호 효능에 관한 연구, 경희대학교 동서의학대학원, 2004.
  22. Matsuda, H., Cai, H., Kudo, M., Tosa, H., Iinuma, M. Study on anti-cataract drugs from natural sources. II. Effects on Buddlejae flos on in vitro aldose reductase activity. Biol. Pharm. Bull. 18: 463-466, 1995. https://doi.org/10.1248/bpb.18.463
  23. Raff, A.C., Meyer, T.W., Hostetter, T.H. New insights into uremic toxicity. Curr. Opin. Nephrol. Hypertens 17: 560-565, 2008. https://doi.org/10.1097/MNH.0b013e32830f45b6
  24. Covacci, V., Bruzzese, N., Sgambato, A., Di Francesco, A., Russo, M.A., Wolf, F.I., Cittadini, A. Magnesium restriction induces granulocytic differentiation and expression of p27Kip1 in human leukemic HL-60 cells. J. Cell Biochem. 70: 313-322, 1998. https://doi.org/10.1002/(SICI)1097-4644(19980901)70:3<313::AID-JCB4>3.0.CO;2-Q
  25. Sherr, C.J., Roberts, J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9: 1149-1163, 1995. https://doi.org/10.1101/gad.9.10.1149
  26. Brugarolas, J., Chandrasekaran, C., Gordon, J.I., Beach, D., Jacks, T., Hannon, G.J. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377: 552-557, 1995. https://doi.org/10.1038/377552a0