Genetic Differentiation between Up- and Downstream Populations of Tribolodon hakonensis (Pieces: Cyprinidae)

삼척오십천 상.하류에 분포하는 황어, Tribolodon hakonensis (잉어과) 집단의 유전적 분화

  • 이신애 (영남대학교 생명과학과) ;
  • 이완옥 (국립수산과학원 중앙내수면연구소) ;
  • 석호영 (영남대학교 생명과학과)
  • Received : 2012.06.11
  • Accepted : 2012.07.18
  • Published : 2012.08.31

Abstract

Tribolodon hakonensis(Cypriniformes; Leuciscinae) is anadromous; they are born in freshwater, migrate back to the ocean, then return to their home stream for spawning from mid-March to early-June. Here, five microsatellites were used to assess the level of gene flow among T. hakonensis populations from the Samcheok-Oship Stream, South Korea. The frequencies of dominant alleles across several loci differed between down-and upstream populations divided by several weirs, and pairwise multilocus $F_{ST}$ estimate was significantly high(0.083). However, there were no signs of any loss of genetic variation in the upstream population. Assignment tests of individuals in admixture model(K=2) to a set of baseline samples showed fairly correct assignment to each cluster; all of upstream individuals sere included in the first cluster, while the majority of downstream individuals(65%) comprise the second cluster. These results indicate reduced gene flow between up- and downstream populations but allowing passive downstream drift. It is likely that man-made structures might at least partially be a factor for creating and consolidating the current distribution patterns of genetic variation among T. hakonensis populations in the Samcheok-Oship Stream. This information will assist governing agencies in making informed decisions regarding conservation of anadromous fishes in Korean drainage systems.

잉어목(Cypriniformes) 황어아과(Leuciscinae)의 황어(Tribolodon hakonensis)는 회유성 어류로서 일생의 대부분을 바다에서 보내고 산란기인 3월 중순경부터 물이 맑은 하천으로 소상하여 자갈이나 모랫바닥에 집단으로 알을 낳는다. 본 연구의 목적은 5개의 microsatellite 유전자 분석을 통하여 단편화된 하천에서 황어 집단 간 유전자 흐름과 다양성을 측정하는 것이다. 강원도 삼척 오십천은 여러 대형 보에 의해 부분적으로 단편화되어 있는 중형 하천으로, 본 연구에서 하류지역과 대형 보를 여러 번 지나야 다다를 수 있는 상류지역에서 채집한 황어 개체들의 유전자형을 비교, 분석하였다. 유전자 분석 결과 상, 하류 집단들은 많은 대립인자를 공유하지만 그 빈도에 있어 다소 큰 차이를 보였다. 상류와 하류 간 유전적 분화($F_{ST}$)는 0.083 정도로 두 집단 간에는 제한된 유전적 흐름만이 존재한다고 볼 수 있다. 상류집단이 유전적으로 고립이 되어 있지만 뚜렷한 유전적 다양성의 감소나 집단의 크기 감소가 관찰되지는 않았다. 이러한 양상을 개체 수준에서 증명하기 위해 Bayesian 통계를 이용, 집단의 유전적 구조를 파악하였다. 분석 결과 삼척 오십천 개체들은 2개의 유전적 cluster로 구분할 수 있으며, 상류 집단 개체들은 모두 cluster 1에 해당하는 등 단일하게 나타났으나 하류 집단 개체 중 65 % 정도가 cluster 2에 그리고 나머지 개체들은 cluster 1에 해당하는 다양한 양상이 나타났다. 이로 미루어 두 집단은 유전적으로 분화되어 있고, 상류의 집단이 하류에 흘러들어가는 경우는 있지만 하류로부터 유전적 공급은 거의 전무한 형태로 볼 수 있고, 인위적 구조물들이 이러한 집단 구조에 영향을 미쳤을 가능성이 있다. 본 연구에서 제시된 자료들은 향후 황어 집단의 보전 정책 등을 수립하는데 필요한 정보를 제시할 수 있을 것이다.

Keywords

References

  1. Allan, J.D. and A.S. Flecker(1993) Biodiversity conservation in running waters: identifying the major factors that threaten destruction of riverine species and ecosystems. BioSci 43: 32-43. https://doi.org/10.2307/1312104
  2. Baerwald, M.R. and B. May(2004)Characterization of micro-satellite loci for five members of the minnow family Cyprinidae found in the Sacramento-San Joaquin Delta and its tributaries. Mol. Ecol. Notes 4: 385-390. https://doi.org/10.1111/j.1471-8286.2004.00661.x
  3. Carroll, S.P.(2008) Facing change: forms and foundations of contemporary adaptation to biotic invasions. Mol. Ecol. 17: 361-372. https://doi.org/10.1111/j.1365-294X.2007.03484.x
  4. Carroll, S.P., M. Kinnison and L. Bernatchez(2011) In the light of evolution: interdisciplinary challenges in food, health and the environment. Evol. Appl. 4: 155-158. https://doi.org/10.1111/j.1752-4571.2011.00182.x
  5. Castric, V., F. Bonney and L. Bernatchez(2001) Landscape structure and hierarchical genetic diversity in the brook charr, Salvelinus fontinalis. Evolution 55: 1,016-1,028.
  6. Corander, J., P. Marttinen, J. Siren and J. Tang(2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9:539. https://doi.org/10.1186/1471-2105-9-539
  7. Cornuet, J.M. and G. Luikart(1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2,001-2,014.
  8. Crispo, E., P. Bentzen, D.N. Reznick, M.T. Kinnison and A.P. Hendry(2006) The relative influence of natural selection and geography on gene flow in guppies. Mol. Ecol. 15: 49-62.
  9. Di Rienzo, A., A.C. Peterson, J.C. Garza, A.M. Valdes, M. Slatkin and N.B. Freimer(1994) Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. 91: 3,166-3,170. https://doi.org/10.1073/pnas.91.8.3166
  10. Glaubitz, J.(2004) CONVERT: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Notes 4: 309-310. https://doi.org/10.1111/j.1471-8286.2004.00597.x
  11. Goudet, J.(2001) FSTAT, a program to estimate and test gene diversities and fixation indices. Available from http://www.unil.ch/izea/softwares/fstat.html.
  12. Guo, W. and E.A. Thompson(1992) A Monte Carlo method for combined segregation and linkage analysis. AM. J. Hum. Genet. 51: 1,111-1,126.
  13. Hedrick, P.W. and P.S. Miller(1992) Conservation genetics: techniques and fundamentals. Ecol. Appl. 2: 30-46. https://doi.org/10.2307/1941887
  14. Jungwirth, M., S. Schmutz and S. Weiss(1998) Fish migration and fish by passes. Blackwell Science, Oxford, UK, 440pp.
  15. Kalinowski, S.T., A.P. Wagner and M.L. Taper(2006) ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol. Ecol. Notes 6: 576-579. https://doi.org/10.1111/j.1471-8286.2006.01256.x
  16. Kawanabe, H. and N. Mizuno(1989) Freshwater Fishes of Japan. Yama-Kei, Tokyo, 720pp.
  17. Kinnison, M.T., A.P. Hendry and C.A. Stockwell(2007) Contemporary evolution meets conservation biology II: impediments to integration and application. Ecol. Res. 22: 947-954. https://doi.org/10.1007/s11284-007-0416-6
  18. Koizumi, N., T.W. Quinn, M. Park, J. Fike, K. Nishida, T. Takemura, K. Watabe and A. Mori(2011) Isolation and characterization of 21 polymorphic microsatellite loci in the Japanese dace(Tribolodon hakonensis). Cons. Genet. Resour. 3: 565-567. https://doi.org/10.1007/s12686-011-9405-8
  19. Laroche, J. and J. Durand(2004) Genetic structure of fragmented populations of a threatened endemic percid of the Rhone river: Zingel asper. Heredity 92: 329-334. https://doi.org/10.1038/sj.hdy.6800424
  20. Marchant, R. and G. Hehir(2002) The use of AUSRIVAS predictive models to assess the response of lotic macroinvertebrates to dams in south east Australia. Freshw. Biol. 47: 1,033-1,050. https://doi.org/10.1046/j.1365-2427.2002.00823.x
  21. Moriyama, T., M. Fujisaku, M. Mizutani and A. Goto(2008) Migration of Japanese dace(Ugui) in water zone network formed by streams, canal and river utilized for irrigation and drainage. Trans. Jap. Soc. Irrigation Drainage Rural Engineering 254: 1-10. (in Japanese with English abstract)
  22. Nakamura, M.(1969) Cyprinid fishes of Japan. Studies on the life history of cyprinid fishes of Japan. Research Institute for Natural Resources, Tokyo, 455pp. (in Japanese)
  23. Nishimura, S.(1974) Origin of the Sea of Japan. Tsukiji-shokan, Tokyo, 227pp. (in Japanese)
  24. Peel, D., J.R. Ovenden and S.L. Peel(2004) $N_EESTIMATOR$: software for estimating effective population size, Version 1.3. Queensland Government, Department of Primary Industries and Fisheries, Brisbane.
  25. Piry, S., G. Luikart and J.M. Cornuet(1999) Bottleneck: a computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 90: 502-503. https://doi.org/10.1093/jhered/90.4.502
  26. Raymond, M. and F. Rousset(1995) GENEPOP(ver. 1.2): population genetics software for extract tests and ecumenicism. J. Hered. 86: 248-249.
  27. Sakai, H., A. Goto and S.R. Jeon(2002) Speciation and dispersal of Tribolodon species(Pisces, Cyprinidae) around the Sea of Japan. Zool. Sci. 19: 1,291-1,303. https://doi.org/10.2108/zsj.19.1291
  28. Suk, H.Y. and B.D. Neff(2009) Microsatellite genetic differentiation among populations of the Trinidadian guppy. Heredity 102: 425-434. https://doi.org/10.1038/hdy.2009.7
  29. Vyskocilova, M., A. Simkova and J-F. Martin(2007) Isolation and characterization of microsatellites in Leuciscus cephalus(Cypriniformes, Cyprinidae) and cross-species amplification within the family Cyprinidae. Mol. Ecol. Notes 7: 1,150- 1,154. https://doi.org/10.1111/j.1471-8286.2007.01813.x
  30. Waples, R.S., R.W. Zabel, M.D. Scheurell and B.L. Sanderson (2007) Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system. Mol. Ecol. 17: 84-96.
  31. Weir, B.S.(1979) Inferences about linkage disequilibrium. Biometrics 35: 235-254. https://doi.org/10.2307/2529947
  32. Wofford, J.E.B., R.E. Gresswell and M.A. Banks(2005) Influence of barriers to movement on within-watershed genetic variation of coastal cutthroat trout. Ecol. Appl. 15: 628-637. https://doi.org/10.1890/04-0095