DOI QR코드

DOI QR Code

In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials

  • Choi, Yu-Sung (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kim, Sung-Hun (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Jai-Bong (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Han, Jung-Suk (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Yeo, In-Sung (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University)
  • Received : 2012.08.01
  • Accepted : 2012.08.17
  • Published : 2012.08.31

Abstract

PURPOSE. Fracture of the veneering material of zirconia restorations frequently occurs in clinical situations. The purpose of this in vitro study was to compare the fracture strengths of zirconia crowns veneered with various ceramic materials by various techniques. MATERIALS AND METHODS. A 1.2 mm, $360^{\circ}$ chamfer preparation and occlusal reduction of 2 mm were performed on a first mandibular molar, and 45 model dies were fabricated in a titanium alloy by CAD/CAM system. Forty-five zirconia copings were fabricated and divided into three groups. In the first group (LT) zirconia copings were veneered with feldspathic porcelain by the layering technique. In the second group (HT) the glass ceramic was heat-pressed on the zirconia coping, and for the third group (ST) a CAD/CAM-fabricated high-strength anatomically shaped veneering cap was sintered onto the zirconia coping. All crowns were cemented onto their titanium dies with Rely $X^{TM}$ Unicem (3M ESPE) and loaded with a universal testing machine (Instron 5583) until failure. The mean fracture values were compared by an one-way ANOVA and a multiple comparison post-hoc test (${\alpha}$= 0.05). Scanning electron microscope was used to investigate the fractured interface. RESULTS. Mean fracture load and standard deviation was $4263.8{\pm}1110.8$ N for Group LT, $5070.8{\pm}1016.4$ for Group HT and $6242.0{\pm}1759.5$ N for Group ST. The values of Group ST were significantly higher than those of the other groups. CONCLUSION. Zirconia crowns veneered with CAD/CAM generated glass ceramics by the sintering technique are superior to those veneered with feldspathic porcelain by the layering technique or veneered with glass ceramics by the heat-pressing technique in terms of fracture strength.

Keywords

References

  1. Barnfather KD, Brunton PA. Restoration of the upper dental arch using Lava all-ceramic crown and bridgework. Br Dent J 2007;202:731-5. https://doi.org/10.1038/BDJ.2007.534
  2. Coli P, Karlsson S. Precision of a CAD/CAM technique for the production of zirconium dioxide copings. Int J Prosthodont 2004;17:577-80.
  3. Della Bona A, Mecholsky JJ Jr, Anusavice KJ. Fracture behavior of lithia disilicate- and leucite-based ceramics. Dent Mater 2004;20:956-62. https://doi.org/10.1016/j.dental.2004.02.004
  4. Devaud V. Guidelines for success with zirconia ceramics: the changing standards. Pract Proced Aesthet Dent 2005;17:508, 510.
  5. Raigrodski AJ. All-ceramic full-coverage restorations: concepts and guidelines for material selection. Pract Proced Aesthet Dent 2005;17:249-56.
  6. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J 2008;204:505-11. https://doi.org/10.1038/sj.bdj.2008.350
  7. Luthardt RG, Holzhuter MS, Rudolph H, Herold V, Walter MH. CAD/CAM-machining effects on Y-TZP zirconia. Dent Mater 2004;20:655-62. https://doi.org/10.1016/j.dental.2003.08.007
  8. Tinschert J, Natt G, Hassenpflug S, Spiekermann H. Status of current CAD/CAM technology in dental medicine. Int J Comput Dent 2004;7:25-45.
  9. Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate-, alumina-, and zirconiabased three-unit fixed partial dentures: a laboratory study. Int J Prosthodont 2001;14:231-8.
  10. Vult von Steyern P, Ebbesson S, Holmgren J, Haag P, Nilner K. Fracture strength of two oxide ceramic crown systems after cyclic pre-loading and thermocycling. J Oral Rehabil 2006;33:682-9. https://doi.org/10.1111/j.1365-2842.2005.01604.x
  11. Tinschert J, Zwez D, Marx R, Anusavice KJ. Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics. J Dent 2000;28:529-35. https://doi.org/10.1016/S0300-5712(00)00030-0
  12. International Organization for standardization. ISO 6872:2008, Dental ceramic. Genova: ISO; 2008.
  13. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005;21:984-91. https://doi.org/10.1016/j.dental.2005.03.013
  14. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: Zirconia veneering ceramics. Dent Mater 2006;22:857-63. https://doi.org/10.1016/j.dental.2005.11.014
  15. Beuer F, Edelhoff D, Gernet W, Sorensen JA. Three-year clinical prospective evaluation of zirconia-based posterior fixed dental prostheses (FDPs). Clin Oral Investig 2009;13:445-51. https://doi.org/10.1007/s00784-009-0249-5
  16. Sailer I, Feher A, Filser F, Luthy H, Gauckler LJ, Scharer P, Franz Hammerle CH. Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence Int 2006;37:685-93.
  17. Vult von Steyern P, Carlson P, Nilner K. All-ceramic fixed partial dentures designed according to the DC-Zirkon technique. A 2-year clinical study. J Oral Rehabil 2005;32:180-7. https://doi.org/10.1111/j.1365-2842.2004.01437.x
  18. Strub JR, Stiffler S, Scharer P. Causes of failure following oral rehabilitation: biological versus technical factors. Quintessence Int 1988;19:215-22.
  19. Bindl A, Luthy H, Mormann WH. Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns. Dent Mater 2006;22:29-36. https://doi.org/10.1016/j.dental.2005.02.007
  20. Bindl A, Luthy H, Mormann WH. Thin-wall ceramic CAD/CAM crown copings: strength and fracture pattern. J Oral Rehabil 2006;33:520-8. https://doi.org/10.1111/j.1365-2842.2005.01588.x
  21. Bindl A, Mormann WH. Survival rate of mono-ceramic and ceramic-core CAD/CAM-generated anterior crowns over 2-5 years. Eur J Oral Sci 2004;112:197-204. https://doi.org/10.1111/j.1600-0722.2004.00119.x
  22. Tinschert J, Natt G, Mohrbotter N, Spiekermann H, Schulze KA. Lifetime of alumina- and zirconia ceramics used for crown and bridge restorations. J Biomed Mater Res B Appl Biomater 2007;80:317-21.
  23. Witkowski S, Komine F, Gerds T. Marginal accuracy of titanium copings fabricated by casting and CAD/CAM techniques. J Prosthet Dent 2006;96:47-52. https://doi.org/10.1016/j.prosdent.2006.05.013
  24. Proussaefs P. Crowns cemented on crown preparations lacking geometric resistance form. Part II: effect of cement. J Prosthodont 2004;13:36-41. https://doi.org/10.1111/j.1532-849X.2004.04008.x
  25. Smith TB, Kelly JR, Tesk JA. In vitro fracture behavior of ceramic and metal-ceramic restorations. J Prosthodont 1994;3:138-44. https://doi.org/10.1111/j.1532-849X.1994.tb00144.x
  26. Sundh A, Molin M, Sjogren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater 2005;21:476-82. https://doi.org/10.1016/j.dental.2004.07.013
  27. Potiket N, Chiche G, Finger IM. In vitro fracture strength of teeth restored with different all-ceramic crown systems. J Prosthet Dent 2004;92:491-5. https://doi.org/10.1016/j.prosdent.2004.09.001
  28. Komine F, Blatz MB, Matsumura H. Current status of zirconia based fixed restorations. J Oral Sci 2010;52:531-9. https://doi.org/10.2334/josnusd.52.531
  29. Preis V, Behr M, Hahnel S, Handel G, Rosentritt M. In vitro failure and fracture resistance of veneered and full-contour zirconia restorations. J Dent 2012 Jul 24. [Epub ahead of print].
  30. Beuer F, Schweiger J, Eichberger M, Kappert HF, Gernet W, Edelhoff D. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings-a new fabrication mode for all-ceramic restorations. Dent Mater 2009;25:121-8. https://doi.org/10.1016/j.dental.2008.04.019
  31. Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont 1993;6:462-7.
  32. Rosentritt M, Plein T, Kolbeck C, Behr M, Handel G. In vitro fracture force and marginal adaptation of ceramic crowns fixed on natural and artificial teeth. Int J Prosthodont 2000;13:387-91.
  33. Kelly JR. Clinically relevant approach to failure testing of allceramic restorations. J Prosthet Dent 1999;81:652-61. https://doi.org/10.1016/S0022-3913(99)70103-4
  34. Ritter JE. Predicting lifetimes of materials and material structures. Dent Mater 1995;11:142-6. https://doi.org/10.1016/0109-5641(95)80050-6
  35. Tsalouchou E, Cattell MJ, Knowles JC, Pittayachawan P, McDonald A. Fatigue and fracture properties of yttria partially stabilized zirconia crown systems. Dent Mater 2008;24:308-18. https://doi.org/10.1016/j.dental.2007.05.011
  36. Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res 1995;74:1253-8. https://doi.org/10.1177/00220345950740060301
  37. Raigrodski AJ, Chiche GJ, Potiket N, Hochstedler JL, Mohamed SE, Billiot S, Mercante DE. The efficacy of posterior three-unit zirconium-oxide-based ceramic fixed partial dental prostheses: a prospective clinical pilot study. J Prosthet Dent 2006;96:237-44. https://doi.org/10.1016/j.prosdent.2006.08.010
  38. Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 2007;20:383-8.
  39. Snyder MD, Hogg KD. Load-to-fracture value of different all-ceramic crown systems. J Contemp Dent Pract 2005;6:54-63.
  40. Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater 2012;28:449-56. https://doi.org/10.1016/j.dental.2011.11.024
  41. Pak HS, Han JS, Lee JB, Kim SH, Yang JH. Influence of porcelain veneering on the marginal fit of Digident and Lava CAD/CAM zirconia ceramic crowns. J Adv Prosthodont 2010;2:33-8. https://doi.org/10.4047/jap.2010.2.2.33
  42. Bachhav VC, Aras MA. The effect of ceramic thickness and number of firings on the color of a zirconium oxide based all ceramic system fabricated using CAD/CAM technology. J Adv Prosthodont 2011;3:57-62. https://doi.org/10.4047/jap.2011.3.2.57

Cited by

  1. Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia vol.5, pp.3, 2013, https://doi.org/10.4047/jap.2013.5.3.248
  2. Retention forces of 14-unit zirconia telescopic prostheses with six double crowns made from zirconia—an in vitro study vol.18, pp.4, 2014, https://doi.org/10.1007/s00784-013-1093-1
  3. Effect of Veneering Methods on Zirconia Framework-Veneer Ceramic Adhesion and Fracture Resistance of Single Crowns vol.24, pp.8, 2014, https://doi.org/10.1111/jopr.12236
  4. Evaluation of the color reproducibility of all-ceramic restorations fabricated by the digital veneering method vol.6, pp.2, 2014, https://doi.org/10.4047/jap.2014.6.2.71
  5. Effect of different veneering techniques on the fracture strength of metal and zirconia frameworks vol.7, pp.6, 2015, https://doi.org/10.4047/jap.2015.7.6.454
  6. Influence of Different Post-Plasma Treatment Storage Conditions on the Shear Bond Strength of Veneering Porcelain to Zirconia vol.9, pp.1, 2016, https://doi.org/10.3390/ma9010043
  7. An In Vitro Investigation of Veneered Zirconia-Based Restorations Shade Reproducibility pp.1059941X, 2016, https://doi.org/10.1111/jopr.12489
  8. Veneered Zirconia-Based Restorations Fracture Resistance Analysis pp.1059941X, 2016, https://doi.org/10.1111/jopr.12490
  9. Influence of veneering technique and veneer-coping thickness on fracture toughness of implant retained veneered Y-TZP zirconia crowns vol.31, pp.16, 2017, https://doi.org/10.1080/01694243.2016.1277863
  10. Dental ceramics: a review of new materials and processing methods vol.31, pp.suppl 1, 2017, https://doi.org/10.1590/1807-3107bor-2017.vol31.0058
  11. Effect of coloring agent on the color of zirconia vol.55, pp.1, 2017, https://doi.org/10.4047/jkap.2017.55.1.18
  12. Load-bearing capacity of various CAD/CAM monolithic molar crowns under recommended occlusal thickness and reduced occlusal thickness conditions vol.9, pp.6, 2017, https://doi.org/10.4047/jap.2017.9.6.423
  13. Fracture resistance and survival of implant-supported, zirconia-based hybrid-abutment crowns: Influence of aging and crown structure pp.20411618, 2018, https://doi.org/10.1111/jicd.12355
  14. Repairing fractured ceramic veneer with CAD/CAM ceramic blocks: a preliminary tensile bond strength study pp.1753-5557, 2018, https://doi.org/10.1080/10667857.2018.1495881
  15. performance and fracture strength of thin monolithic zirconia crowns vol.10, pp.2, 2018, https://doi.org/10.4047/jap.2018.10.2.79
  16. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns vol.2015, pp.None, 2012, https://doi.org/10.1155/2015/418641
  17. Influence of heating rate on the flexural strength of monolithic zirconia vol.11, pp.4, 2012, https://doi.org/10.4047/jap.2019.11.4.202
  18. Effect of veneering material and technique on the fracture resistance of porcelain-veneered zirconia crowns vol.7, pp.1, 2012, https://doi.org/10.4103/sjos.sjoralsci_69_18
  19. In Vitro Evaluation of Bond Strength between Zirconia Core and CAD/CAM‐Produced Veneers vol.29, pp.1, 2012, https://doi.org/10.1111/jopr.13068
  20. In vitro evaluation of fracture resistance and cyclic fatigue resistance of computer-aided design-on and hand-layered zirconia crowns following cementation on epoxy dies vol.20, pp.1, 2012, https://doi.org/10.4103/jips.jips_222_19
  21. Ceramic Materials and Technologies Applied to Digital Works in Implant-Supported Restorative Dentistry vol.13, pp.8, 2020, https://doi.org/10.3390/ma13081964
  22. The bridge restoration made by self-glazed zirconia with a digital processes vol.119, pp.5, 2020, https://doi.org/10.1080/17436753.2019.1675401
  23. Fracture Load of Metal, Zirconia and Polyetheretherketone Posterior CAD-CAM Milled Fixed Partial Denture Frameworks vol.14, pp.4, 2012, https://doi.org/10.3390/ma14040959
  24. Effects of Veneering Ceramic and Methods on Failure Load of Veneered Zirconia vol.11, pp.5, 2012, https://doi.org/10.3390/app11052129