DOI QR코드

DOI QR Code

Increased Vascular Endothelial Growth Factor in the Ventricular Cerebrospinal Fluid as a Predictive Marker for Subsequent Ventriculoperitoneal Shunt Infection : A Comparison Study among Hydrocephalic Patients

  • Lee, Jeong-Hyun (Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Back, Dong-Bin (Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine) ;
  • Park, Dong-Hyuk (Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine) ;
  • Cha, Yoo-Hyun (Department of Neurosurgery, Dongrae Wooridul Hospital) ;
  • Kang, Shin-Hyuk (Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine) ;
  • Suh, Jung-Keun (Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine)
  • Received : 2011.12.19
  • Accepted : 2012.06.13
  • Published : 2012.06.28

Abstract

Objective : The aim of this study is to determine the association between the cerebrospinal fluid (CSF) biomarkers and inflammation, and the predictive value of these CSF biomarkers for subsequent shunt associated infection. Methods : We obtained CSF samples from the patients with hydrocephalus during ventriculoperitoneal (VP) shunt operations. Twenty-two patients were enrolled for this study and divided into 3 groups: subarachnoid hemorrhage (SAH)-induced hydrocephalus, idiopathic normal pressure hydrocephalus (INPH) and hydrocephalus with a subsequent shunt infection. We analyzed the transforming growth factor-${\beta}1$, tumor necrosis factor-${\alpha}$, vascular endothelial growth factor (VEGF) and total tau in the CSF by performing enzyme-linked immunosorbent assay. The subsequent development of shunt infection was confirmed by the clinical presentations, the CSF parameters and CSF culture from the shunt devices. Results : The mean VEGF concentration (${\pm}$standard deviation) in the CSF of the SAH-induced hydrocephalus, INPH and shunt infection groups was $236{\pm}138$, $237{\pm}80$ and $627{\pm}391$ pg/mL, respectively. There was a significant difference among the three groups (p=0.01). Between the SAH-induced hydrocephalus and infection groups and between the INPH and infection groups, there was a significant difference of the VEGF levels (p<0.01). However, the other marker levels did not differ among them. Conclusion : The present study showed that only the CSF VEGF levels are associated with the subsequent development of shunt infection. Our results suggest that increased CSF VEGF could provide a good condition for bacteria that are introduced at the time of surgery to grow in the brain, rather than reflecting a sequel of bacterial infection before VP shunt.

Keywords

References

  1. Bayston R, Lambert E : Duration of protective activity of cerebrospinal fluid shunt catheters impregnated with antimicrobial agents to prevent bacterial catheter-related infection. J Neurosurg 87 : 247-251, 1997 https://doi.org/10.3171/jns.1997.87.2.0247
  2. Cheng SY, Nagane M, Huang HS, Cavenee WK : Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF189. Proc Natl Acad Sci U S A 94 : 12081-12087, 1997 https://doi.org/10.1073/pnas.94.22.12081
  3. Del Bigio MR : Hydrocephalus-induced changes in the composition of cerebrospinal fluid. Neurosurgery 25 : 416-423, 1989 https://doi.org/10.1227/00006123-198909000-00016
  4. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W : Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140 : 947-959, 1998 https://doi.org/10.1083/jcb.140.4.947
  5. Flood C, Akinwunmi J, Lagord C, Daniel M, Berry M, Jackowski A, et al. : Transforming growth factor-beta1 in the cerebrospinal fluid of patients with subarachnoid hemorrhage : titers derived from exogenous and endogenous sources. J Cereb Blood Flow Metab 21 : 157-162, 2001 https://doi.org/10.1097/00004647-200102000-00007
  6. Garges HP, Moody MA, Cotten CM, Smith PB, Tiffany KF, Lenfestey R, et al. : Neonatal meningitis: what is the correlation among cerebrospinal fluid cultures, blood cultures, and cerebrospinal fluid parameters? Pediatrics 117 : 1094-1100, 2006 https://doi.org/10.1542/peds.2005-1132
  7. Geracioti TD Jr, Orth DN, Ekhator NN, Blumenkopf B, Loosen PT : Serial cerebrospinal fluid corticotropin-releasing hormone concentrations in healthy and depressed humans. J Clin Endocrinol Metab 74 : 1325-1330, 1992 https://doi.org/10.1210/jc.74.6.1325
  8. Gjerris A, Gjerris F, Sørensen PS, Sorensen EB, Christensen NJ, Fahrenkrug J, et al. : Do concentrations of neurotransmitters measured in lumbar cerebrospinal fluid reflect the concentrations at brain level? Acta Neurochir (Wien) 91 : 55-59, 1988 https://doi.org/10.1007/BF01400529
  9. Harrigan MR, Ennis SR, Masada T, Keep RF : Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema. Neurosurgery 50 : 589-598, 2002
  10. Hayashi T, Abe K, Suzuki H, Itoyama Y : Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28 : 2039-2044, 1997 https://doi.org/10.1161/01.STR.28.10.2039
  11. Heep A, Stoffel-Wagner B, Bartmann P, Benseler S, Schaller C, Groneck P, et al. : Vascular endothelial growth factor and transforming growth factor-beta1 are highly expressed in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus. Pediatr Res 56 : 768-774, 2004 https://doi.org/10.1203/01.PDR.0000141524.32142.53
  12. Issa R, Krupinski J, Bujny T, Kumar S, Kaluza J, Kumar P : Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischemic stroke. Lab Invest 79 : 417-425, 1999
  13. Johnson MD, Gold LI, Moses HL : Evidence for transforming growth factor-beta expression in human leptomeningeal cells and transforming growth factor-beta-like activity in human cerebrospinal fluid. Lab Invest 67 : 360-368, 1992
  14. Jones KL, Krous HF, Nadeau J, Blackbourne B, Zielke HR, Gozal D : Vascular endothelial growth factor in the cerebrospinal fluid of infants who died of sudden infant death syndrome: evidence for antecedent hypoxia. Pediatrics 111 : 358-363, 2003 https://doi.org/10.1542/peds.111.2.358
  15. Koehne P, Hochhaus F, Felderhoff-Mueser U, Ring-Mrozik E, Obladen M, Bührer C : Vascular endothelial growth factor and erythropoietin concentrations in cerebrospinal fluid of children with hydrocephalus. Childs Nerv Syst 18 : 137-141, 2002 https://doi.org/10.1007/s00381-002-0567-2
  16. Koehne P, Willam C, Strauss E, Schindler R, Eckardt KU, Bührer C : Lack of hypoxic stimulation of VEGF secretion from neutrophils and platelets. Am J Physiol Heart Circ Physiol 279 : H817-H824, 2000 https://doi.org/10.1152/ajpheart.2000.279.2.H817
  17. Krupinski J, Kumar P, Kumar S, Kaluza J : Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke 27 : 852-857, 1996 https://doi.org/10.1161/01.STR.27.5.852
  18. Kudo T, Mima T, Hashimoto R, Nakao K, Morihara T, Tanimukai H, et al. : Tau protein is a potential biological marker for normal pressure hydrocephalus. Psychiatry Clin Neurosci 54 : 199-202, 2000 https://doi.org/10.1046/j.1440-1819.2000.00658.x
  19. Lenfestey RW, Smith PB, Moody MA, Clark RH, Cotten CM, Seed PC, et al. : Predictive value of cerebrospinal fluid parameters in neonates with intraventricular drainage devices. J Neurosurg 107 : 209-212, 2007
  20. Li X, Miyajima M, Jiang C, Arai H : Expression of TGF-betas and TGF-beta type II receptor in cerebrospinal fluid of patients with idiopathic normal pressure hydrocephalus. Neurosci Lett 413 : 141-144, 2007 https://doi.org/10.1016/j.neulet.2006.11.039
  21. Maharaj AS, Saint-Geniez M, Maldonado AE, D'Amore PA : Vascular endothelial growth factor localization in the adult. Am J Pathol 168 : 639-648, 2006 https://doi.org/10.2353/ajpath.2006.050834
  22. Marti HH, Risau W : Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci U S A 95 : 15809-15814, 1998 https://doi.org/10.1073/pnas.95.26.15809
  23. Nag S, Takahashi JL, Kilty DW : Role of vascular endothelial growth factor in blood-brain barrier breakdown and angiogenesis in brain trauma. J Neuropathol Exp Neurol 56 : 912-921, 1997 https://doi.org/10.1097/00005072-199708000-00009
  24. Ogunshola OO, Stewart WB, Mihalcik V, Solli T, Madri JA, Ment LR : Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res 119 : 139-153, 2000 https://doi.org/10.1016/S0165-3806(99)00125-X
  25. Patt S, Danner S, Theallier-Janko A, Breier G, Hottenrott G, Plate KH, et al. : Upregulation of vascular endothelial growth factor in severe chronic brain hypoxia of the rat. Neurosci Lett 252 : 199-202, 1998 https://doi.org/10.1016/S0304-3940(98)00582-5
  26. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE : Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci U S A 92 : 905-909, 1995 https://doi.org/10.1073/pnas.92.3.905
  27. Plate KH, Beck H, Danner S, Allegrini PR, Wiessner C : Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol 58 : 654-666, 1999 https://doi.org/10.1097/00005072-199906000-00010
  28. Schoenbaum SC, Gardner P, Shillito J : Infections of cerebrospinal fluid shunts: epidemiology, clinical manifestations, and therapy. J Infect Dis 131 : 543-552, 1975 https://doi.org/10.1093/infdis/131.5.543
  29. Stopa EG, Berzin TM, Kim S, Song P, Kuo-LeBlanc V, Rodriguez-Wolf M, et al. : Human choroid plexus growth factors : What are the implications for CSF dynamics in Alzheimer's disease? Exp Neurol 167 : 40-47, 2001 https://doi.org/10.1006/exnr.2000.7545
  30. Tarkowski E, Tullberg M, Fredman P, Wikkelsö C : Normal pressure hydrocephalus triggers intrathecal production of TNF-alpha. Neurobiol Aging 24 : 707-714, 2003 https://doi.org/10.1016/S0197-4580(02)00187-2
  31. Tarnaris A, Watkins LD, Kitchen ND : Biomarkers in chronic adult hydrocephalus. Cerebrospinal Fluid Res 3 : 11, 2006 https://doi.org/10.1186/1743-8454-3-11
  32. van der Flier M, Hoppenreijs S, van Rensburg AJ, Ruyken M, Kolk AH, Springer P, et al. : Vascular endothelial growth factor and blood-brain barrier disruption in tuberculous meningitis. Pediatr Infect Dis J 23 : 608-613, 2004 https://doi.org/10.1097/01.inf.0000131634.57368.45
  33. van der Flier M, Stockhammer G, Vonk GJ, Nikkels PG, van Diemen-Steenvoorde RA, van der Vlist GJ, et al. : Vascular endothelial growth factor in bacterial meningitis : detection in cerebrospinal fluid and localization in postmortem brain. J Infect Dis 183 : 149-153, 2001 https://doi.org/10.1086/317643
  34. Yang J, Dombrowski SM, Deshpande A, Krajcir N, Luciano MG : VEGF/VEGFR-2 changes in frontal cortex, choroid plexus, and CSF after chronic obstructive hydrocephalus. J Neurol Sci 296 : 39-46, 2010 https://doi.org/10.1016/j.jns.2010.06.012

Cited by

  1. Identification of Potential Cerebrospinal Fluid Biomarkers To Discriminate between Infection and Sterile Inflammation in a Rat Model of Staphylococcus epidermidis Catheter Infection vol.87, pp.9, 2012, https://doi.org/10.1128/iai.00311-19