DOI QR코드

DOI QR Code

Alteration of Trabecular Bone Microarchitecure at Tibial Epiphysis due to Knee Joint Instability by Anterior Cruciate Ligament Rupture: Difference between Medial and Lateral Part

전방십자인대 손상으로 인한 슬관절 불안정성에 따른 경골 골단 해면골 미세구조 변화 : 내방과 외방에서의 해면골 미세구조 패턴 변화

  • Lee, Joo-Hyung (Department of Mechanical Engineering, Sejong University) ;
  • Chun, Keyoung-Jin (Gerontechnology R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Han-Sung (Department of Biomedical Engineering, Yonsei University) ;
  • Lim, Do-Hyung (Department of Mechanical Engineering, Sejong University)
  • 이주형 (세종대학교 기계공학과) ;
  • 전경진 (한국생산기술연구원 실버기술연구그룹) ;
  • 김한성 (연세대학교 의공학과) ;
  • 임도형 (세종대학교 기계공학과)
  • Received : 2012.04.13
  • Accepted : 2012.06.12
  • Published : 2012.06.30

Abstract

Knee joint instability by anterior cruciate ligament(ACL) rupture is allowing the abnormal loading condition at the tibial epiphysis locally, resulting in producing locally different bone bruise. The study examined difference between local alteration patterns of trabecular bone microarchitecture at medial and lateral parts of the tibial epiphysis by ACL rupture. Fourteen SD rats were divided into Control(CON; n = 7) and Anterior Cruciate Ligament Transection(ACLT; n = 7) groups. The tibial joints were then scanned by in vivo ${\mu}$-CT at 0, 4, and 8 weeks post-surgery. The results showed that alteration pattern on trabecular bone microarchitecture at medial part was significantly higher than that at lateral part of the tibial epiphysis in ACLT group from 0 to 8 weeks(P < 0.05). Tb.Th and Tb.Sp distributions were well corresponded with differences between aforementioned trabecular bone microarchitectural alteration pattens at medial and lateral parts of the tibial epiphysis in ACLT group from 0 to 8 weeks(P < 0.05). These findings suggest that the alteration patterns of trabecular bone microarchitecture should be locally and periodically considered, particularly with respect to the prediction of bone fracture risk by ACL rupture. Improved understanding of the alteration patterns at medial and lateral trabecular bone microarchitectures at the tibial epiphysis may assist in developing more targeted treatment interventions for knee joint instability secondary to ACL rupture.

Keywords

References

  1. L.Y. Griffin, J. Agel, M.J. Albohm, E.A. Arendt, R.W. Dick, W.E. Garrett, J.G. Garrick, T.E. Hewett, L. Huston, M.L. Ireland, R.J. Johnson, W.B. Kibler, S. Lephart, J.L. Lewis, T.N. Lindenfeld, B.R. Mandelbaum, P. Marchak, C.C. Teitz, and E.M. Wojtys, "Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies," J Am Acad Orthop Surg, vol. 8, no. 3, pp. 141-150, 2000. https://doi.org/10.5435/00124635-200005000-00001
  2. H. Roos, T. Adalberth, L. Dahlberg, and L.S. Lohmander, "Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age," Osteoarthritis Cartilage, vol. 3, no. 4, pp. 261-267, 1995. https://doi.org/10.1016/S1063-4584(05)80017-2
  3. C.E. Quatman, A. Kiapour, G.D. Myer, K.R. Ford, C.K. Demetropoulos, V.K. Goel, and T.E. Hewett, "Cartilage pressure distributions provide a footprint to define female anterior cruciate ligament injury mechanisms," Am J Sports Med, vol. 39, no. 8, pp. 1706-1713, 2011. https://doi.org/10.1177/0363546511400980
  4. N. Manidakis, A. Dosani, R. Dimitriou, D. Stengel, S. Matthews, and P. Giannoudis, "Tibial plateau fractures: functional outcome and incidence of osteoarthritis in 125 cases," Int Orthop, vol. 34, no. 4, pp. 565-570, 2010. https://doi.org/10.1007/s00264-009-0790-5
  5. P.A. Kaplan, C.W. Walker, R.F. Kilcoyne, D.E. Brown, D. Tusek, and R.G. Dussault, "Occult fracture patterns of the knee associated with anterior cruciate ligament tears: assessment with MR imaging," Radiology, vol. 183, no. 3, pp. 835- 838, 1992. https://doi.org/10.1148/radiology.183.3.1584943
  6. M.A. Rosen, D.W. Jackson, and P.E. Berger, "Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures," Arthroscopy, vol. 7, no. 1, pp. 45-51, 1991. https://doi.org/10.1016/0749-8063(91)90077-B
  7. M. Bellido, L. Lugo, J.A. Roman-Blas, S. Castaneda, J.R. Caeiro, S. Dapia, E. Calvo, R. Largo, and G. Herrero-Beaumont, "Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis," Arthritis Res Ther, vol. 12, no. 4, pp. R152, 2010. https://doi.org/10.1186/ar3103
  8. Y.H. Sniekers, F. Intema, F.P. Lafeber, G.J. van Osch, J.P. van Leeuwen, H. Weinans, and S.C. Mastbergen, "A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models," BMC Musculoskelet Disord, vol. 9, pp. 20, 2008. https://doi.org/10.1186/1471-2474-9-20
  9. S.K. Boyd, R. Muller, T. Leonard, and W. Herzog, "Longterm periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis," Osteoarthritis Cartilage, vol. 13, no. 3, pp. 235-242, 2005. https://doi.org/10.1016/j.joca.2004.11.004
  10. T. Hayami, M. Pickarski, G.A. Wesolowski, J. McLane, A. Bone, J. Destefano, G.A. Rodan, and T. Duong le, "The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model," Arthritis Rheum, vol. 50, no. 4, pp. 1193- 1206, 2004. https://doi.org/10.1002/art.20124
  11. S.K. Boyd, J.R. Matyas, G.R. Wohl, A. Kantzas, and R.F. Zernicke, "Early regional adaptation of periarticular bone mineral density after anterior cruciate ligament injury," J Appl Physiol, vol. 89, no. 6, pp. 2359-2364, 2000. https://doi.org/10.1152/jappl.2000.89.6.2359
  12. J. Leppala, P. Kannus, A. Natri, M. Pasanen, H. Sievanen, I. Vuori, and M. Jarvinen, "Effect of anterior cruciate ligament injury of the knee on bone mineral density of the spine and affected lower extremity: a prospective one-year follow-Up study," Calcif Tissue Int, vol. 64, no. 4, pp. 357-363, 1999. https://doi.org/10.1007/s002239900632
  13. D.D. McErlain, C.T. Appleton, R.B. Litchfield, V. Pitelka, J.L. Henry, S.M. Bernier, F. Beier, and D.W. Holdsworth, "Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo micro-computed tomography," Osteoarthritis Cartilage, vol. 16, no. 4, pp. 458-469, 2008. https://doi.org/10.1016/j.joca.2007.08.006
  14. J.M. Williams, D.L. Felten, R.G. Peterson, and B.L. O'Connor, "Effects of surgically induced instability on rat knee articular cartilage," J Anat, vol. 134, no. Pt 1, pp. 103-109, 1982.
  15. J.S. Day, M. Ding, J.C. van der Linden, I. Hvid, D.R. Sumner, and H. Weinans, "A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage," J Orthop Res, vol. 19, no. 5, pp. 914-918, 2001. https://doi.org/10.1016/S0736-0266(01)00012-2
  16. R.C. Bray, M.R. Doschak, T.S. Gross, and R.F. Zernicke, "Physiological and mechanical adaptations of rabbit medial collateral ligament after anterior cruciate ligament transection," J Orthop Res, vol. 15, no. 6, pp. 830-836, 1997. https://doi.org/10.1002/jor.1100150607
  17. G. Wexler, D.E. Hurwitz, C.A. Bush-Joseph, T.P. Andriacchi, and B.R. Bach, Jr., "Functional gait adaptations in patients with anterior cruciate ligament deficiency over time," Clin Orthop Relat Res, no. 348, pp. 166-175, 1998.
  18. M.P. Rogers, D.E. Trentham, W.J. McCune, B.I. Ginsberg, H.G. Rennke, P. Reich, and J.R. David, "Effect of psychological stress on the induction of arthritis in rats," Arthritis Rheum, vol. 23, no. 12, pp. 1337-1342, 1980. https://doi.org/10.1002/art.1780231202
  19. M.M. Smith, and C.B. Little, "Experimental models of osteoarthritis" In: R.W. Moskowitz, R.D. Altman, M.C. Hochberg, J.A. Buckwalter, V.M. Goldberg, "Osteoarthritis: Diagnosis and Medical/Surgical Management", 4th edition, WB Saunders., Philadelpia, 2007, pp. 118.
  20. S.C. Lee, H.K. Kim, I.K. Chun, M.H. Cho, and S.Y. Lee, "A Flat-Panel Detector Based Micro-Ct System: Performance Evaluation for Small-Animal Imaging", Phys Med Biol, vol 48, pp. 4173-4185, 2003. https://doi.org/10.1088/0031-9155/48/24/014