DOI QR코드

DOI QR Code

Effects of Pinocembrin on the Initiation and Promotion Stages of Rat Hepatocarcinogenesis

  • Punvittayagul, Charatda (Department of Biochemistry and Center for Innovation in Chemistry, Faculty of Medicine, Chiang Mai University) ;
  • Pompimon, Wilart (Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Lampang Rajabhat University) ;
  • Wanibuchi, Hideki (Department of Pathology, Osaka City University Medical School) ;
  • Fukushima, Shoji (Japan Bioassay Research Center) ;
  • Wongpoomchai, Rawiwan (Department of Biochemistry and Center for Innovation in Chemistry, Faculty of Medicine, Chiang Mai University)
  • Published : 2012.05.30

Abstract

Pinocembrin (5, 7-dihydroxyflavanone) is a flavanone extracted from the rhizome of Boesenbergia pandurata. Our previous studies demonstrated that pinocembrin had no toxicity or mutagenicity in rats. We here evaluated its effects on the initiation and promotion stages in diethylnitrosamine-induced rat hepatocarcinogenesis, using short- and medium-term carcinogenicity tests. Micronucleated hepatocytes and liver glutathione-S-transferase placental form foci were used as end point markers. Pinocembrin was neither mutagenic nor carcinogenic in rat liver, and neither inhibited nor prevented micronucleus formation as well as GST-P positive foci formation induced by diethylnitrosamine. Interestingly, pinocembrin slightly increased the number of GST-P positive foci when given prior to diethylnitrosamine injection.

Keywords

References

  1. Aranganathan S, Nalini N (2009). Efficacy of the potential chemopreventive agent, hesperetin (citrus flavanone), on 1,2-dimethylhydrazine induced colon carcinogenesis. Food Chem Toxicol, 47, 2594-600. https://doi.org/10.1016/j.fct.2009.07.019
  2. Charoensin S (2008). Inhibitory mechanism of pinostrobin isolated from Boesenbergia pandurata on diethylnitrosamineinduced initiation stage of rat hepatocarcinogenesis. Department of Biochemistry. Chiang Mai, Chiang Mai University.
  3. Charoensin S, Punvittayagul C, Pompimon W, et al (2010). Toxicological and clastogenic evaluation of some flavanones isolated from Boesenbergia pandurata (Roxb.) in Wistar rats. Thai J Toxicol, 25, 29-40.
  4. Chen C, Kong AN (2004). Dietary chemopreventive compounds and ARE/EpRE signaling. Free Radic Biol Med, 36, 1505-16. https://doi.org/10.1016/j.freeradbiomed.2004.03.015
  5. Debersac P, Vernevaut MF, Amiot MJ, et al (2001). Effects of a water-soluble extract of rosemary and its purified component rosmarinic acid on xenobiotic-metabolizing enzymes in rat liver. Food Chem Toxicol, 39, 109-17. https://doi.org/10.1016/S0278-6915(00)00117-4
  6. Ekambaram G, Rajendran P, Magesh V (2008). Naringenin reduces tumor size and weight lost in N-methyl-N'-nitro- N-nitrosoguanidine-induced gastric-carcinogenesis in rats. Nutr Res, 28, 106-12. https://doi.org/10.1016/j.nutres.2007.12.002
  7. Galati G, O'Brien PJ (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med, 37, 287-303. https://doi.org/10.1016/j.freeradbiomed.2004.04.034
  8. Higgin GM, Anderson RM (1931). Experimental pathology of the liver, Restoration of the liver of white rat following partial surgical removal. Arch Pathol, 12, 186-202.
  9. Hsiao Y-C, Kuo W-H, Chen P-N, et al (2007). Flavanone and 2'-OH flavanone inhibit metastasis of lung cancer cells via down-regulation of proteinases activities and MAPK pathway. Chem Biol Interact, 167, 193-206. https://doi.org/10.1016/j.cbi.2007.02.012
  10. Hwang EI, Kaneko M, Ohnishi Y, et al (2003). Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol, 69, 2699-706. https://doi.org/10.1128/AEM.69.5.2699-2706.2003
  11. Ito N, Tamano S, Shirai T (2003). A medium-term rat liver bioassay for rapid in vivo detection of carcinogenic potential of chemicals. Cancer Sci, 94, 3-8. https://doi.org/10.1111/j.1349-7006.2003.tb01343.x
  12. Jaipetch T, Kanghae S, Pancharoen O, et al (1982). Constituents of Boesenbergia pandurata (syn. Kaempferia pandurata): Isolation, crystal structure and synthesis of (${\pm}$)-Boesenbergin A. Aust J Chem, 35, 351-61. https://doi.org/10.1071/CH9820351
  13. Klaassen CD (2008). Casarett and Doull's: Toxicology - The Basic Science of Poisons, The McGraw-Hill Companies, Inc.: USA.
  14. Liu R, Gao M, Yang ZH, et al (2008). Pinocembrin protects rat brain against oxidation and apoptosis induced by ischemiareperfusion both in vivo and in vitro. Brain Res, 1216, 104-15. https://doi.org/10.1016/j.brainres.2008.03.049
  15. Pepeljnjak S, Jalsenjak I, Maysinger D (1985). Flavonoid content in propolis extracts and growth inhibition of Bacillus subtilis. Pharmazie, 40, 122-3.
  16. Puatanachokchai R, Morimura K, Wanibuchi H, et al (2006). Alpha-benzene hexachloride exerts hormesis in preneoplastic lesion formation of rat hepatocarcinogenesis with the possible role for hepatic detoxifying enzymes. Cancer Lett, 240, 102-13. https://doi.org/10.1016/j.canlet.2005.09.006
  17. Puatanachokchai R, Noguchi T, Vinitketkumnuen U, et al (1996). Rat liver micronucleus assay. Proceeding of the 4th Sountheast Asian Workshop on Short-term assays for detection of environmental mutagens, carcinogens and teratogens, Naresuan University, Phitsanulok, Thailand.
  18. Punvittayagul C, Wongpoomchai R, Taya S, et al (2011). Effect of pinocembrin isolated from Boesenbergia pandurata on xenobiotic-metabolizing enzymes in rat liver. Drug Metab Lett, 5, 1-5. https://doi.org/10.2174/187231211794455226
  19. Sabarinathan D, Mahalakshmi P, Vanisree AJ (2011). Naringenin, a flavanone inhibits the proliferation of cerebrally implanted C6 glioma cells in rats. Chem Biol Interact, 189, 26-36. https://doi.org/10.1016/j.cbi.2010.09.028
  20. Said RA, Grassi TF, Clarissa Scolastici C, et al (2010). Absence of chemopreventive influence of propolis on the rat liver altered foci development. Exp Toxicol Pathol, 62, 405-12. https://doi.org/10.1016/j.etp.2009.05.012
  21. Sala A, Recio M C, Schinella GR, et al (2003). Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside. Eur J Pharmacol, 461, 53-61. https://doi.org/10.1016/S0014-2999(02)02953-9
  22. Santos AC, Uyemura S A, Lopes JL, et al (1998). Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria. Free Radic Biol Med, 24, 1455-61. https://doi.org/10.1016/S0891-5849(98)00003-3
  23. Satoh M, Hayakari M, Ookawa K, et al (2001). Lipid peroxidation end products-responded induction of a preneoplastic marker enzyme glutathione S-transferase P-form (GST-P) in rat liver on admistration via the portal vein. Mutat Res, 483, 65-72. https://doi.org/10.1016/S0027-5107(01)00225-1
  24. Siess MH, Leclerc J, Canivenc-Lavier MC, et al (1995). Heterogenous effects of natural flavonoids on monooxygenase activities in human and rat liver microsomes. Toxicol Appl Pharmacol, 130, 73-8. https://doi.org/10.1006/taap.1995.1010
  25. Surh YJ (2003). Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer, 3, 768-80. https://doi.org/10.1038/nrc1189
  26. Tan XL, Spivack SD (2009). Dietary chemoprevention strategies for induction of phase II xenobiotic-metabolizing enzymes in lung carcinogenesis: A review. Lung Cancer, 65, 129-37. https://doi.org/10.1016/j.lungcan.2009.01.002
  27. Tiwawech D, Hirose M, Futakuchi M, et al (2000). Enhancing effects of Thai edible plants on 2-amino-3, 8-dimethylimidazo(4,5-f )quinoxaline hepatocarcinogenesis in a rat medium-term bioassay. Cancer Lett, 158, 195-201. https://doi.org/10.1016/S0304-3835(00)00530-9
  28. Trakoontivakorn G, Nakahara K, Shinmoto H, et al (2001). Structural analysis of a novel antimutagenic compound, 4-Hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. J Agric Food Chem, 49, 3046-50. https://doi.org/10.1021/jf010016o
  29. Tsuda H, Futakuchi M, Fukamachi K, et al (2010). A mediumterm, rapid rat bioassay model for the detection of carcinogenic potential of chemicals. Toxicol Pathol, 38, 182-7. https://doi.org/10.1177/0192623309356451
  30. Tuchinda P, Reutrakul V, Claeson P, et al (2002). Antiinflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata. Phytochemistry, 59, 169-73. https://doi.org/10.1016/S0031-9422(01)00451-4
  31. Walle T, Ta N, Kawamori T, et al (2007). Cancer chemopreventive properties of orally bioavailable flavonoids--methylated versus unmethylated flavones. Biochem Pharmacol, 73, 1288-96. https://doi.org/10.1016/j.bcp.2006.12.028
  32. Wen X, Walle T (2006). Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metab Dispos, 34, 1786-92. https://doi.org/10.1124/dmd.106.011122
  33. Yang Z, Liu R, Li X, et al (2009). Development and validation of a high-performance liquid chromatographic method for determination of pinocembrin in rat plasma: application to pharmacokinetic study. J Pharm Biomed Anal, 49, 1277-81. https://doi.org/10.1016/j.jpba.2009.02.030

Cited by

  1. Cancer Chemopreventive Effect of Spirogyra Neglecta (Hassall) Kützing on Diethylnitrosamine-Induced Hepatocarcinogenesis in Rats vol.15, pp.4, 2014, https://doi.org/10.7314/APJCP.2014.15.4.1611
  2. Combination of Spices Aqueous Extracts as Antioxidant and Novel Anticancer Agents in Human Liver Cancer Cell Line vol.11, pp.1, 2016, https://doi.org/10.3923/ijbc.2017.1.8