DOI QR코드

DOI QR Code

Single Degree of Freedom Hybrid Dynamic Test with Steel Frame Structure

강 뼈대 구조물의 단자유도 하이브리드 동적 실험

  • Received : 2012.06.04
  • Accepted : 2012.07.17
  • Published : 2012.08.30

Abstract

The purpose of this study is to evaluate the structural dynamic behavior under hybrid control system. The hybrid test is to consider the interaction between the numerical and physical models. In this paper, single degree of freedom hybrid test was performed with one-bay, two-story steel frame structure. One column at the first floor was selected as a physical substructure and one actuator was used for applying the displacement load in horizontal direction. El Centro as earthquake waves was inputted and OpenSees was employed as the numerical analysis program for the hybrid real-time simulation. As a result, the total time of the hybrid test was about 9.6% of actual measured seismic period. The experimental results agreed well with the numerical one in terms of the maximum displacement. In nonlinear analysis, however, material nonlinearity made a difference of residual strain. Therefore, this hybrid dynamic test can be used to predict the structural dynamic performance more effectively than shaking table test, because of the spatial and economic limitations.

하이브리드 실험은 구조물의 거동을 수치해석 모델과 물리적 부분구조 모델로 나누어 동시에 수행되는 실험법으로써 본 논문에서는 지진하중에 의한 1경간 2층 강 뼈대 구조에 대한 하이브리드 시험을 수행하였다. 1층 기둥 1개소를 물리적 부분구조모형으로 선택하고, 한 개의 액추에이터를 이용해 수평방향으로 변위를 가하여 수치해석과 하이브리드 실험결과 사이의 거동추이를 분석하였다. 입력 지진데이터로는 El Centro를 사용하였으며, OpenSees를 이용하여 강구조물의 선형 또는 비선형 거동을 비교 분석하였다. 그 결과, 선형해석은 수치해석과 하이브리드 응답형상이 매우 잘 일치하였으며, 비선형 해석은 재료 비선형성에 의한 영구변형의 차이는 발생하였으나 최대변위 및 전체응답형상은 매우 유사하였다. 또한, 하이브리드 실험 소요시간은 실제 가진 시간에 약 9.6%의 속도로 현재 국내에서 수행된 실험 중 가장 실시간에 근접한 실험이라 할 수 있다. 따라서, 본 하이브리드 실험은 구조물의 동적 거동을 예측하는데 적절하게 활용될 수 있으며, 공간적, 경제적 제약이 있는 진동대 실험을 대체할 수 있으리라 판단된다.

Keywords

References

  1. S.-K. Park (2010) Estimation of Aseismatic Performance of Laminated Rubber Bearing through Shaking Table Tests, Journal of the Korean Society for Railway, 13(4), pp. 440-446.
  2. K. Takanashi (1975) Non-linear earthquake response analysis of structures by a computer actuator on-line system - Part1 details of system, Transactions of the Architectural Intitute of Japan, 229, pp. 77-83.
  3. S.A. Mahin, P.-S.B. Shing, C.R. Thewalt, R.D. Hanson (1989) Pseudo-dynamic test method-current status and future direction, J. Engng Mech., 115, pp. 2113-2128.
  4. S.N. Dermitzakis, S.A. Mahin (1985) Development of substructuring techniques for on-line computer controlled seismic performance testing, UBC/EERC-85/04, Earthquake Engineering Research Institute, University of California, Berkeley, California.
  5. C.R. Thewalt, S.A. Mahin (1987) Hybrid solution techniques for generalized pseudodynamic testing, UBC/EERC-87/09, Earthquake Engineering Research Institute, University of California, Berkeley, California.
  6. U.E. Dorka, D. Heiland (1991) Fast online earthquake utilizing a novel PC supported measurement and control concept, 4th Conference on Structural Dynamics, Southampton, UK, 1991.
  7. U.E. Dorka (2002) Hybrid experimental-numerical simulation of vibrating structures, International Conference WAVE2002, Okayama, Japan.
  8. V. Bayer, U.E. Dorka, U. Fullekrug, J. Gschwilm (2005) On real-time pseudodynamic substructure testing: algorithm, numerical and experimental results, Aerospace Science and Technology, 9(3), pp. 223-232. https://doi.org/10.1016/j.ast.2005.01.009
  9. P.B. Shing, M.T. Vannan, E. Cater (1991) Implicit time integration for pseudodynamic tests, Earthquake Engineering & Structural Dynamics, 20(9), pp. 809-819. https://doi.org/10.1002/eqe.4290200902
  10. P.B. Shing, M.T. Vannan (1991) Implicit time integration for pseudodynamic tests: convergence and energy dissipation, Earthquake Engineering & Structural Dynamics, 20(9), pp. 809-819. https://doi.org/10.1002/eqe.4290200902
  11. C.R. Thewalt, M. Roman (1994) Performance parameters for pseudodynamic tests, Journal of Structural Engineering, 120(9), pp. 2768-2781. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:9(2768)
  12. Y. Takahashi, G.L. Fenves (2006) Software framework for distributed experimental computational simulation of structural systems, Earthquake Engineering & Structural Dynamics, 35(3), pp. 267-291. https://doi.org/10.1002/eqe.518
  13. R.-Y. Jung, P.B. Shing (2007) Performance of a real-time pseudodynamic test system considering nonlinear structural response, Earthquake Engineering and Structural Dynamics, 36(12), pp. 1785-1809. https://doi.org/10.1002/eqe.722
  14. V. Saouma, M. Sivaselvan (2008) Integration schemes for realtime hybrid testing, Hybrid Simulation : Theory, Implementation and Applications, Balkema, Leiden, pp. 25-34.
  15. I.C. Choi (2009) Development and Verification of Hybrid Test System using Small Column Mode, Master's Thesis, Myongji University.
  16. S.M. Cho (2011) Verification of Hybrid Structural Test Technique by Shaking Table Test of a Linear 2-Dimensional Frame Model, Earthquake Engineering Society of Korea, pp. 33-43.
  17. Z. Wei (2005) Fast Hybrid Test System For Substructure Evaluation, PhD Thesis, Department of Civil Engineering, University of Colorado, Boulder.