DOI QR코드

DOI QR Code

An Analysis of Elastic Moduli Behaviors of Uniaxial Compression under Loading-Reloading Test (I)

일축압축하에서 반복재하에 따른 탄성정수의 거동분석(I) -경상분지 퇴적암을 대상으로-

  • 이종석 (울산대학교 공과대학 건설환경공학부) ;
  • 문종규 (동명기술공단(주)) ;
  • 최웅의 (현대중공업 설계부)
  • Received : 2012.03.29
  • Accepted : 2012.08.22
  • Published : 2012.08.31

Abstract

Elastic moduli and behavioral characteristics changes of very widely according to stress level resulting from uniaxial compressive test of sedimentary rock. This means that elastic moduli do not indicate constants but variables. More appropriate and reasonable outcome will be accepted through loading-reloading test in design and construction progress. An attention for behavioral characteristics of elastic moduli shown in low level of stress should be paid.

탄성계수값은 퇴적암의 일축압축시험을 통하여 응력수준에 따라 넓은 범위로 변하며 거동특성도 다양하게 발현되고 있다. 즉 탄성계수는 정수가 아닌 변수로 볼 수 있는 것이다. 실무에서는 참고자료 및 실험값으로 사용하고 있으나 그 값은 사용하중 수준에서는 매우 큰 값을 채용하고 있다. 설계 및 시공과정에서는 재하-재(再)재하(loading-reloading) 시험을 통한 값을 사용하여 적절하고 합리적인 결과가 도출되어야 할 것이다. 또한 사용하중의 낮은 응력수준에서 발현되는 탄성계수값의 거동특성 역시 유의하여 보아야 할 점이다.

Keywords

References

  1. 김정년 (1985), 통계학 (증보판), 경문사.
  2. 김우철, 김재주, 박병욱, 박성현, 송문섭, 이상열, 이영조, 전종우, 조신섭 (2005), 현대 통계학 (제4 개정판), 서울대학교 자연과학대학, 영지문화사.
  3. Amann F., Button E. A., Evans K. F., Gischig V. S. and Blumel M. (2011), "Experimental Study of the Brittle Behavior of Clay shale in Rapid Unconfined Compression", Rock Mechanics and Rock Engineering, Vol.44, pp.415-430. https://doi.org/10.1007/s00603-011-0156-3
  4. ASTM (D 7012-07e1), "Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures", Annual Book of ASTM Standards, 2009.
  5. ASTM (D 2938-95), "Standard test method for unconfined compressive strength of intact rock core specimens", Annual Book of ASTM Standards, 2005.
  6. ASTM (D 3148-96), "Test method for elastic moduli of intact rock core specimens in uniaxial compression", Annual Book of ASTM Standards, 2005.
  7. ASTM (D 4543-01), "Practices for preparing rock core specimens and determining dimensional and shape tolerances", Annual Book of ASTM Standards, 2005.
  8. ISRM (1979), "Suggested methods for determining the uniaxial compressive strength and deformability of rock materials", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol.16(2), pp.135-140.
  9. Bieniawski Z. T. (1967), "Mechanism of Brittle Fracture of Rock, Part 2-Experimental, Studies", Int. J. of Rock Mech. and Min. Sci., Vol.4, pp.407-423. https://doi.org/10.1016/0148-9062(67)90031-9
  10. Bieniawski Z. T. (1968), "In Situ Strength and Deformation Characteristics of Coal", Engineering Geology, Vol.2, No.5, pp.325-340. https://doi.org/10.1016/0013-7952(68)90011-2
  11. Brace W. F., Paulding B. W. & Scholz C. H. (1966), "Dilatancy in the Fracture of Crystalline Rocks", J. Geophys. Res., Vol. 71, pp.3939-53. https://doi.org/10.1029/JZ071i016p03939
  12. Brace W. F. & Byerlee J. D. (1966), "Regent experimental studies of brittle fracture of rock", Proc., 8th U. S. Symposium on Rock Mechanics, University of Minnesota, pp.58-81.
  13. Cook N. G. W., Hood M. & Tsai F. (1984), "Observations of crack growth in hard rock loaded by an indenter", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol.21, pp.97-107. https://doi.org/10.1016/0148-9062(84)91177-X
  14. Diederichs M. S., Kaiser P. K. & Eberhardt E. (2004), "Damage Initiation and Propagation in Hard Rock During Tunnelling and the Influence of Near-Face Stress Rotation", Int. J. of Rock Mech. and Min. Sci., Vol.41, pp.785-812. https://doi.org/10.1016/j.ijrmms.2004.02.003
  15. Eberhardt E., Stead D. and Stimpson B. (1999), "Quatifying progressive pre-peak brittle fracture damage in rock during uniaxial compression", Int. J. of Rock Mech. and Min. Sci., Vol.36, pp.361-380. https://doi.org/10.1016/S0148-9062(99)00019-4
  16. Gill D. E., Corthesy R. & M. H. Leite (2005), Determining the minimal number of specimens for laboratory testing of rock properties, Eng. Geol., Vol.78, pp.29-51 https://doi.org/10.1016/j.enggeo.2004.10.005
  17. Hawkes J. and Mellor M. (1970), "Uniaxial Testing in Rock Mechanics Laboratories", Eng. Geol, Vol.4, pp.177-285.
  18. ISRM (1979), "Suggested methods for determining the uniaxial compressiv strength and deformability of rock materials", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol.16(2), pp.135-140.
  19. ISRM (1981), Part 1, "Suggested method for determination of the uniaxial compressive strength of rock materials".
  20. ISRM (1999), Draft "ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression", Int. J. of Rock Mech. and Min. Sci., Vol.36, No.3, pp.279-289. https://doi.org/10.1016/S0148-9062(99)00006-6
  21. Korinets A. and Alehossein H. (2002), "On the Initial Linearity of Compressive Stress-Strain Curves for Intact Rock", Rock Mechanics and Rock Engineering, Vol.34, No.4, pp.319-328.
  22. Lau J. S. O. and Chandler N. A. (2004), "Innovative laboratory testing", Int. J. of Rock Mech. and Min. Sci., Vol. 41, pp.1427-1445. https://doi.org/10.1016/j.ijrmms.2004.09.008
  23. Lajtai E. X. & Nesetova V. (1973), "Fracture from compressive stress concenturations around elastic flaws", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol.10, No.4, pp.265-284. https://doi.org/10.1016/0148-9062(73)90038-7
  24. Martin C. D. (1997), "The Effect of Cohesion Loss and Stress Path on Brittle Rock Strength", 17th. Canadian Geotechnical Colloquium, Can. Geotech. J., Vol.34, Nov.5, pp.698-725. https://doi.org/10.1139/t97-030
  25. Paulding B. W. (1966), "Techniques used in studuing the fracture mechanics of rock", Testing Techniques for Rock Mechanics-Am. Soc. Testing Mater., Spec. Tech. Publ., Vol.402, pp.73-84.
  26. Ray S. K., Sarkar M. and Singh T. N. (1999), "Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone", Int. J. of Rock Mech. and Min. Sci., Vol.36, pp.543-549. https://doi.org/10.1016/S0148-9062(99)00016-9
  27. Scholz C. H. (1968 a, b), "Mechanism of Creep in Brittle Rock", J. Geophys. Res., Vol.73, No.3, pp.295-302. https://doi.org/10.1029/JA073i001p00295
  28. Tapponier P. & Brace W. F. (1976), "Development of stress-induced microcracks in Westerly granite", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol.13, pp.103-112. https://doi.org/10.1016/0148-9062(76)91937-9
  29. Walse, J. B. (1965a), "The effect of Cracks on the Uniaxial Elastic Compression of Rocks", J. Geophys. Res., Vol.70, No.2, pp.399-411. https://doi.org/10.1029/JZ070i002p00399
  30. Walse J. B. & Brace W. F. (1966a), "Cracks and Pores in Rock", Proc. Congr. Int. Soc. Rock Mech., 1st, Lisbon, Vol. 1, pp. 643-646.
  31. Walse J. B. & Brace W. F. (1966b), "Elasticity of Rock", Rock Mech. Eng. Geol., Vol.4, No.4, pp.283-297.
  32. Yamaguchi U. (1970), "The number of test-pieces required to determine the strength of rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol.7, No.2, pp.209-227. https://doi.org/10.1016/0148-9062(70)90013-6
  33. Zhao Z. G. & Cai M. (2010), "A mobilized dilation angle model for rocks", Int. J. of Rock Mech. and Min. Sci., Vol.47, pp.368-384. https://doi.org/10.1016/j.ijrmms.2009.12.007