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Abstract

In this paper, a direct controller for nonlinear plants using a neural network is presented. The
controller is composed of an approximate controller and a neural network auxiliary controller.
The approximate controller gives the rough control and the neural network controller gives the
complementary signal to further reduce the output tracking error. This method does not put too
much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural
network is trained and the system has a stable performance for the inputs it has been trained
for. Simulation results show that it is very effective and can realize a satisfactory control of the
nonlinear system.
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1. Introduction of control do not give satisfactory performance,

The conventional design methods of a control
system often require the construction of a math-
ematical model describing the dynamic behavior
of the plant to be controlled. When such a
mathematical model is difficult to obtain due to
uncertainty or complexity of systems, these con—
ventional techniques based on a mathematical
model are not well suited for dealing with.
Artificial neural network techniques have been
suggested for identification and control of non-—
linear plants for which conventional techniques

such as the accuracy in matching the behavior
of the physical system.

A good method of applying neural networks
for control must have the following properties:

1. It must be applicable to nonlinear plants,
since there are already good methods of control
for linear plants.

2. It should not put too much restriction on
the type of nonlinearity that it can handle.

3. It is preferable to have an Unsupervised
Learning method for the neural network because
the desired output form of a system for a given
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mput may be known, but the input form of a
plant that produces that desired output is not
generally known. Unsupervised Training can
avoid identification of the plant or its inverse
model, which is generally not easy to obtain.

4. The system should be stable at least for
the class of inputs it has been trained for.

5. In most cases open loop performance of a
plant can be observed and a approximate con-
troller can be devised for that. It would be de-
sirable if we could put as much knowledge as
possible in the design of this controller and only
leave the extra fine tuning to the neural net—
work controller.

According to the above requirements, a direct
auxiliary controller for nonlinear plants using
neural network is presented.

2. Controller Design

The controller presented here is composed of
an approximate controller and a neural network
auxiliary controller. The structure of controller is
shown in figure 1. The approximate controller
gives the approximate performance and the neu-
ral network auxiliary controller is used for the
purpose of further fine tuning.

The approximate controller can be a PID or
any other conventional controller. It can be de—
signed by using the known dynamics of non-—
linear plant. The neural network employed in
this scheme is an Radial Basis Function
Network (RBFN). It produces the complementary
signal to further reduce the error e between
output y and the reference input r. The struc-
ture of RBFN is showed in Figure 2. It is a
network with two layers, a hidden layer of radi—
al basis neurons and an output layer of linear
neurons. A common choice for the basis function
is a Gaussian given by the (1).

Where Ci represents the center of the basis

function and o denotes its width. The norm || e
[l in equation can be expressed by Euclidean
distance. The weights and biases of each neuron
in the hidden layer define the position and width
of a radial basis function. Each linear output
neuron forms a weighted sum of these radial
basis functions. With the correct weight and
bias values for each layer, and enough hidden
neurons, a RBEN can fit any function with any
desired accuracy. The advantage of the RBFN is
its rapid learning, generality and simplicity.
RBFN finds the input to output map using local
approximations. It can be trained faster than BP
and have none of BP’s training problems such
as saturation and local minima.

RBF Neural Network
Auxiliary Controller
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Input Output layer

hidden layer

Fig. 2. Radial Basis Function Network

In the RBEFN training stage we first observe
the performance of the system with the approx-
imate controller for a certain period of time and
measure the range of error between the output
of the plant and desired output. Then we divide
this error span into certain sections and for each
section we perform a perturbation test: We in—
creased the input to the plant by Se whenever
total square error between the output of the
plant and desired output falls within a specified
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region. If this change of the input results in a
lower value of the total square error, we modify
the output weight of the neural network con-—
troller to work accordingly. This action is con-—
tinued for all sections and the whole process is
repeated until no modification can reduce the
error.

Taking an overlapping Gaussian activation
function for kermel units supposedly provides a
smoother response and better generalization. But
in our case the amount of interference was so
high and we obtained a better performance with
non-overlapping regions. Nevertheless, smooth—
ness of the output can be enhanced by dividing
the correction for each section by modifying the
cost function used for training from J=>e2 to
J=>(enew2+k(enew —eold)2) for k<1.

During the training stage, each time only one
kernel unit responds and one weight is adjusted,
This results in a shorter training time compared
with  Multi-layer (MLP)  type
networks. Since weights are adjusted by a small
value & each time, the number of necessary
iterations depends on the size of error or the

Perception

accuracy of the approximate controller.

The point that makes this method different is
the way in obtaining the necessary corrections,
which is based on the effect of weight perturba—
tion on the total square error for a certain peri—
od of time. Perturbing the weights of a network
is used in Madaline Rule I (MR III) training
for analog implementation of neural networks.
Because this method does not need prior knowl—
edge about the transfer characteristics of the
computing devices, it is not affected by the ef-
fects of neuron to neuron variations. Training
the network based on its instantaneous result of
the error will cause instability when used in a
feedback loop. The performance of the system
here is observed for a certain period of time and
if any adjustment for any given amount of error
increases the total square error, it would not be

accepted. This proves the stability of the system
for the class of inputs it has been trained for.

Generally optimization methods based on pa-
rameter perturbation are bound to failure when
many parameters are involved in perturbation
and that is because of the moving target effect
of the other parameters. It is not the case in the
proposed system for which only one or few re—
lated parameters are active at each time. At
present, methods for directly adjusting the con-—
trol parameters based on the output error are
not available. The work presented in this paper
is a step toward direct adaptive control.

3. Simulation Study

Different nonlinear systems were considered
to evaluate the effect of the proposed method.
Figure 3 gives the effect of controller when it is
used for three different nonlinear plants. In this
figure , y(.) denotes the plant output without
controller, ym(.) denotes the desired output , r(.)
denotes the reference input and yc(.) denotes the
output of the plant with controller. An RBF type
network with 30 kernel units each sensitive to
different ranges of error were used. Input
weights and activation function of the units
were fixed. Output weights were perturbed and
adjusted according to the effect of perturbation
on the total square error for 400 sampling time.
For a sinusoidal input (r(k)=sin(k/50)) and per-
turbation amount of 6=0.1, the amount of reduc—
tion in aggregated square error for a full cycle
of input 1s example 1:from 3.69 to 1.33, example
2:from 105084 to 2644 and example 3:from 32.11
to 456. To observe the learning and general—
ization capability of the system, the controller
was trained on a step response and its perform-—
ance was observed on the sinusoidal input.
Training the network with different types of in-
put will enhance the generalization capability of
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the system.

Example 1
1.2y(k - 1)

(k) = 5
1+ y(k-1)
y, (k)=03y, (k=1)+02y, (k—2)+0.5¢(k —1)

+0.5u(k - 1)

Example 2
k1) y(k —2)(p(k —1) +2.5)

13+ p(k—1)" + y(k—2)°
y, (k)=0.7y, (k=1)+0.1y, (k—2)+r(k—1)

) =2 +1.5u(k —1)

Byt

4. Conclusions

A neural network controller for nonlinear
plants is used in combination with an existing
conventional controller, which removes the need
for a generalized training scheme. The controller
is guaranteed to perform stably for the class of
inputs that it has been trained for. Using this
method of control does not require assumption of
a model for the plant and it makes it different

from  conventional control methodologies.
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Fig. 3. Ym(.) is the output of the reference model, Y(.) is the output of system without

NNC and Yc(.) is the output of system without NNC in the examplel,2 and 3.

Example 3
y(k) = sat(0.5y(k 1) +0.2y(k — 2) + 2. 1u(k — 1))
Yu(k)=048y, (k-1)+02y,(k-2)+r(k-1)
6

(sat(x)=-3+ m)

Furthermore, since training of this network does
not require backpropagation of error, it makes
direct adaptive control possible, a structure be-
yond the capabilities of backpropagation based
on neural networks. The structure used here can
be view as a fuzzy controller implementation for
which the control actions or rules which depend
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on the error between the plant output and the 271t FASEUS YRS, pp. 256-259,
desired output are deduced in training time. It Vol 4, No2, 2011

can also be viewed as a gain scheduling adap-
tive controller which can work for any unknown
plant with no attempt to linearize the system at

Ao

=

each region.

References

[1] J. Moody and C. J. Darken, “Fast learning in
Networks of Locally-Tuned Processing
Units,” Neural Computation, Vol. 1, pp.
281-194, 1999

[2] D. Andes, B. Widrow, M. Lehr and E. Wan,
“MR III:A Robust Algorithm for Training
Analog Neural Networks” International
Joint Conference on Neural Networks,1999

[3] K. S. Narendra and K. Parthasarathy,
“Identification and Control of Dynamical
Systems Using Neural Networks” IEEE
Trans on Neural Network Voll No.l,
pp.4-27, 2003

[4] M. M. Gupta and D. H Rao, “Dynamic 2
Neural Units in the Control of Linear and =X A}
Nonlinear Systems,” In Proceedings of the 2009 2¢ #suigta diEkdd
International ~ Joint Conf. On  Neural AREATT A
Networks, June 2004, pp.100-105 A}

[5] G. A. Montague, M. J. Willis and A. J. 2012 3¢ #Asdgdu GRS
Morris, “Artificial Neural Network Model 21-88t3) ¥ty
Based Control,” Automatic Control
Conference, 2005 <TARoE> GAA ] AEA A 2E)

[6] Howard Demuth, Mark Beale, “Neural
Network ToolBox for Use with MATLAB,”
The MathWorks Inc., 2006

[7] Chen S, Billing S A, “Grant P M. Recursive
Hybrid Algorithm for Nonlinear System
Identification using Radial Function
Network,” Int. J Control,2007,55(5):1051-1070

[8] ®tsAl, 718 Asted, sishd, wias “Al7

W o83 Y] WAAHE” I RdAE



12 SRYLFRSAMII28E=2X M54 HIZ

% 7] 8(Kee-Hwan Nam) H]3] 9
“ 1995\ #sthEla HAxFEAl

) 2000 ¥suiskul ikl

2005 ¥rEohekal skl

7 € A(Yong-Seok Kang) A3
2004 shd-2-30A] Ak
2008 Ziehal skl AL
20091 ¥hs Tkl ekl
Ak
1997:3~20013 tl-9-AFs=F o

A EARER 2
AP
20013~20073  gl=pakdels
s
20073~ F=rZe| et
EXRS
<TAlEo> gdAz], AlzA A E
Z 8 $ (Tae-Woo Kim) k]

1997d 29 k=3l dotal
AR AR F I

200611 290 THEISL Tjstel
HAEA TP

200841 291 FHgoietaL ot
AT} e

2001 2€9~20061 2¢¥
A T 2

200641 39~ FEH
o} A5} g

<HAREoR> A, AleA AL

g A 7] (Suen-Ki Hwang) A3

19973 2€ A&Akddistal
AAE st FEA

2000 2¢¥ Fojdista sk
AR & (F- A

2009 29 st gl
ARFEA T8 Bl A
S

19973249 ~200613 29 St=r
iy Fd 2

20063 3€~&A ZEVI
g Al 2

<o @A, AaA A E

72 d d(Hyun-Yul Kim) A3

2011 34

A ¥ 3(Moon- Hwan Kim) v 3]
2004 =S AR R
gt AFETETLEY
: b (FEHA
- 198311~1997d FHEA(KT)
199714 ~20034 KTF
.2oos»a~faxﬂ P PRETES
; 7 EA T2

<HAEOR olFeal, AFHUENAS ITS, &




