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Abstract

In this paper, a direct controller for nonlinear plants using a neural network is presented. The

controller is composed of an approximate controller and a neural network auxiliary controller.

The approximate controller gives the rough control and the neural network controller gives the

complementary signal to further reduce the output tracking error. This method does not put too

much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural

network is trained and the system has a stable performance for the inputs it has been trained

for. Simulation results show that it is very effective and can realize a satisfactory control of the

nonlinear system.
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1. Introduction

The conventional design methods of a control

system often require the construction of a math-

ematical model describing the dynamic behavior

of the plant to be controlled. When such a

mathematical model is difficult to obtain due to

uncertainty or complexity of systems, these con-

ventional techniques based on a mathematical

model are not well suited for dealing with.

Artificial neural network techniques have been

suggested for identification and control of non-

linear plants for which conventional techniques

of control do not give satisfactory performance,

such as the accuracy in matching the behavior

of the physical system.

A good method of applying neural networks

for control must have the following properties:

1. It must be applicable to nonlinear plants,

since there are already good methods of control

for linear plants.

2. It should not put too much restriction on

the type of nonlinearity that it can handle.

3. It is preferable to have an Unsupervised

Learning method for the neural network because

the desired output form of a system for a given
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input may be known, but the input form of a

plant that produces that desired output is not

generally known. Unsupervised Training can

avoid identification of the plant or its inverse

model, which is generally not easy to obtain.

4. The system should be stable at least for

the class of inputs it has been trained for.

5. In most cases open loop performance of a

plant can be observed and a approximate con-

troller can be devised for that. It would be de-

sirable if we could put as much knowledge as

possible in the design of this controller and only

leave the extra fine tuning to the neural net-

work controller.

According to the above requirements, a direct

auxiliary controller for nonlinear plants using

neural network is presented.

2. Controller Design

The controller presented here is composed of

an approximate controller and a neural network

auxiliary controller. The structure of controller is

shown in figure 1. The approximate controller

gives the approximate performance and the neu-

ral network auxiliary controller is used for the

purpose of further fine tuning.

The approximate controller can be a PID or

any other conventional controller. It can be de-

signed by using the known dynamics of non-

linear plant. The neural network employed in

this scheme is an Radial Basis Function

Network (RBFN). It produces the complementary

signal to further reduce the error e between

output y and the reference input r. The struc-

ture of RBFN is showed in Figure 2. It is a

network with two layers, a hidden layer of radi-

al basis neurons and an output layer of linear

neurons. A common choice for the basis function

is a Gaussian given by the (1).

Where Ci represents the center of the basis

function and σ denotes its width. The norm ||•

|| in equation can be expressed by Euclidean

distance. The weights and biases of each neuron

in the hidden layer define the position and width

of a radial basis function. Each linear output

neuron forms a weighted sum of these radial

basis functions. With the correct weight and

bias values for each layer, and enough hidden

neurons, a RBFN can fit any function with any

desired accuracy. The advantage of the RBFN is

its rapid learning, generality and simplicity.

RBFN finds the input to output map using local

approximations. It can be trained faster than BP

and have none of BP’s training problems such

as saturation and local minima.

Fig. 1. The structure of the controller

Fig. 2. Radial Basis Function Network

In the RBFN training stage we first observe

the performance of the system with the approx-

imate controller for a certain period of time and

measure the range of error between the output

of the plant and desired output. Then we divide

this error span into certain sections and for each

section we perform a perturbation test: We in-

creased the input to the plant by δe whenever

total square error between the output of the

plant and desired output falls within a specified
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region. If this change of the input results in a

lower value of the total square error, we modify

the output weight of the neural network con-

troller to work accordingly. This action is con-

tinued for all sections and the whole process is

repeated until no modification can reduce the

error.

Taking an overlapping Gaussian activation

function for kernel units supposedly provides a

smoother response and better generalization. But

in our case the amount of interference was so

high and we obtained a better performance with

non-overlapping regions. Nevertheless, smooth-

ness of the output can be enhanced by dividing

the correction for each section by modifying the

cost function used for training from J=∑e2 to

J=∑(enew2+k(enew -eold)2) for k<1.

During the training stage, each time only one

kernel unit responds and one weight is adjusted,

This results in a shorter training time compared

with Multi-layer Perception (MLP) type

networks. Since weights are adjusted by a small

value δ each time, the number of necessary

iterations depends on the size of error or the

accuracy of the approximate controller.

The point that makes this method different is

the way in obtaining the necessary corrections,

which is based on the effect of weight perturba-

tion on the total square error for a certain peri-

od of time. Perturbing the weights of a network

is used in Madaline Rule III (MR III) training

for analog implementation of neural networks.

Because this method does not need prior knowl-

edge about the transfer characteristics of the

computing devices, it is not affected by the ef-

fects of neuron to neuron variations. Training

the network based on its instantaneous result of

the error will cause instability when used in a

feedback loop. The performance of the system

here is observed for a certain period of time and

if any adjustment for any given amount of error

increases the total square error, it would not be

accepted. This proves the stability of the system

for the class of inputs it has been trained for.

Generally optimization methods based on pa-

rameter perturbation are bound to failure when

many parameters are involved in perturbation

and that is because of the moving target effect

of the other parameters. It is not the case in the

proposed system for which only one or few re-

lated parameters are active at each time. At

present, methods for directly adjusting the con-

trol parameters based on the output error are

not available. The work presented in this paper

is a step toward direct adaptive control.

3. Simulation Study

Different nonlinear systems were considered

to evaluate the effect of the proposed method.

Figure 3 gives the effect of controller when it is

used for three different nonlinear plants. In this

figure , y(.) denotes the plant output without

controller, ym(.) denotes the desired output , r(.)

denotes the reference input and yc(.) denotes the

output of the plant with controller. An RBF type

network with 30 kernel units each sensitive to

different ranges of error were used. Input

weights and activation function of the units

were fixed. Output weights were perturbed and

adjusted according to the effect of perturbation

on the total square error for 400 sampling time.

For a sinusoidal input (r(k)=sin(k/50)) and per-

turbation amount of δ=0.1, the amount of reduc-

tion in aggregated square error for a full cycle

of input is example 1:from 3.69 to 1.33, example

2:from 105.84 to 26.44 and example 3:from 32.11

to 4.56. To observe the learning and general-

ization capability of the system, the controller

was trained on a step response and its perform-

ance was observed on the sinusoidal input.

Training the network with different types of in-

put will enhance the generalization capability of
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Fig. 3. Ym(.) is the output of the reference model, Y(.) is the output of system without 
NNC and Yc(.) is the output of system without NNC in the example1,2 and 3.

the system.
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4. Conclusions

A neural network controller for nonlinear

plants is used in combination with an existing

conventional controller, which removes the need

for a generalized training scheme. The controller

is guaranteed to perform stably for the class of

inputs that it has been trained for. Using this

method of control does not require assumption of

a model for the plant and it makes it different

from conventional control methodologies.

Furthermore, since training of this network does

not require backpropagation of error, it makes

direct adaptive control possible, a structure be-

yond the capabilities of backpropagation based

on neural networks. The structure used here can

be view as a fuzzy controller implementation for

which the control actions or rules which depend
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on the error between the plant output and the

desired output are deduced in training time. It

can also be viewed as a gain scheduling adap-

tive controller which can work for any unknown

plant with no attempt to linearize the system at

each region.
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