
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 8, Aug 2012                                                1926 

Copyright ⓒ 2012 KSII 

 
This work was supported by the National Natural Science Foundation of China under grant No. 60903221. 

DOI: 10.3837/tiis.2012.08.003 

Forensics Aided Steganalysis of 
Heterogeneous Bitmap Images with 

Different Compression History 
 

Xiaodan Hou, Tao Zhang, Gang Xiong and Baoji Wan 
 Zhengzhou Information Science and Technology Institute 

Zhengzhou, Henan 450002 - P. R. China 
[e-mail: {hxd2305, dirker2012}]@163.com, {dr.zhangtao, gangxiong1986}@gmail.com] 

*Corresponding author: Xiaodan Hou 
 

Received June 4, 2012; revised July 16, 2012; accepted August 16, 2012;  
published August 30, 2012 

 

 

Abstract 
 

In this paper, two practical forensics aided steganalyzers (FA-steganalyzer) for heterogeneous 

bitmap images are constructed, which can properly handle steganalysis problems for mixed 
image sources consisting of raw uncompressed images and JPEG decompressed images with 

different quality factors. The first FA-steganalyzer consists of a JPEG decompressed image 

identifier followed by two corresponding steganalyzers, one of which is used to deal with 
uncompressed images and the other is used for mixed JPEG decompressed images with 

different quality factors. In the second FA-steganalyzer scheme, we further estimate the 

quality factors for JPEG decompressed images, and then steganalyzers trained on the 
corresponding quality factors are used. Extensive experimental results show that the proposed 

two FA-steganalyzers outperform the existing steganalyzer that is trained on a mixed dataset. 

Additionally, in our proposed FA-steganalyzer scheme, we can select the steganalysis 

methods specially designed for raw uncompressed images and JPEG decompressed images 
respectively, which can achieve much more reliable detection accuracy than adopting the 

identical steganalysis method regardless of the type of cover source. 
 

 

Keywords: Information hiding, steganalysis, LSB matching, image forensics, forensics 
aided steganalysis 
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1. Introduction 

As a new research direction of information security field, modern information hiding 

techniques have attracted extensive attention in academe once brought forward since the mid 

1990s. In the past ten years, the battle between steganography and its counterpart steganalysis 
became more and more drastic. From the literature released in recent years, we can see that the 

detection techniques for image steganography have achieved fruitful research results, which 

exhibit excellent detection performance under the laboratory environment. However, the 

existing steganalysis algorithms are difficult to obtain high detection accuracy when applied to 
the heterogeneous image sources under the practical network environment, which consist of 

images generated by various image acquisition devices, equipped with multiplicate image 

quality, image content and texture and undergoing diverse complex image processing. The 
main reasons for this phenomenon are shown in the following two aspects: 

(1) A wide variety of steganalysis algorithms rely on certain assumptions and restrictions on 

the statistical properties of cover images, and therefore they are only effective for specific 
cover image types. For example, some steganalyzers are developed under the assumption that 

the JPEG stegoimage has been compressed only once, and this is especially true for 

steganalysis methods based on calibration [1], and thus ignoring the effects of 

double-compression may lead to extremely inaccurate steganalysis results. Therefore, this 
issue extremely limits the practical applications of steganalysis algorithms. 

(2) Under the practical network environment we have no knowledge of the statistics of the 

cover images, which is often neglected in the current literature. So this may result in a 
mismatch between the statistics of the training set and those of the testing set, which can 

significantly decrease the performance of a steganalyzer [2][3]. For example, the JPEG format 

accepts the quantization table as a parameter and different tables will induce a change of 

statistical properties of DCT (discrete cosine transform) coefficients, thus effectively 
enlarging the space of JPEG covers. So a steganalyzer trained on one quality factor may give 

less accurate results on images with a different quality factor (see, e.g., [4]). Consequently, it is 

very difficult to obtain the high detection accuracy for the existing steganalyzers when applied 
to the actual heterogeneous images.  

The first issue tells us that the existing steganalyzers are much sensitive to the cover image 

type. So how to construct a feature set capable of reliably classifying images from various 
sources is a way to address this issue. However, cover image types are various and complicate, 

hence making it more difficult to distinguish them from stego images in this way. The second 

issue shows that without any knowledge of cover source, the single training set may bring on a 

significant drop in accuracy. So the widely adopted strategy to handle this issue is to train the 
steganalyzer on as diverse images as possible, but meanwhile it also complicates the 

steganalysis method. 

An alternative approach to deal with the two issues above is to train a bank of steganalyzers 
for several image types and equip this bank with a source identification, tampering detection 

or content-based image retrieval preclassifier that would try to recognize the image type and 

then send the image to the appropriate steganalyzer explicitly designed to work with images of 
that class. This approach was lately proposed in [3], but the details of an implementation 

scheme and its performance were not reported . 

Recently, some researchers have paid attention to the approach above and presented some 

primary research results. Pevný et al. [5] constructed a forensic steganalysis tool for JPEG 
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images that can properly analyze single- and double-compressed stego images and classify 

them to selected current steganographic methods. Barni et al. [6] explored the steganalysis 
problem of images produced by different sources. Firstly, a preclassifier was used to identify 

image source, and then used a version of the steganalyzer that had been explicitly trained to 

work with images belonging to the correct class. This scheme was implemented in a simple set 

up involving only two image classes—computer generated and camera images, achieving 
better detection performance. Amirkhani et al. [7] proposed a new framework that enables us 

to employ the content of images in blind steganalysis systems, significantly enhancing the 

detection accuracy of these systems according to the experimental results. However, the new 
framework was presented based on the hypothesis that the content class of an image must be 

irrelevant to its type (i.e., cover or stego).  

Accordingly there are still two remaining unsolved problems needed to consider for the 
alternative approach. So far, most of image forensics techniques were designed under the 

assumption that the image under investigation is a cover image. However, the message 

embedding will change the statistics of cover images unavoidably, which may impose an 

effect on the results of forensics classification. Therefore the first problem is how to improve 
the existing image forensics methods to handle both cover and stego images. Moreover, how 

to set the decision threshold of image forensics preclassifier to obtain a trade-off on individual 

steganalyzers and further to get the best overall detection performance is the second problem. 
It is well known that JPEG is the most commonly used compression standard in many image 

capture devices and softwares (such as most digital cameras, Adobe Photoshop). However, 

JPEG images are sometimes converted and stored as bitmaps. In that case, we have no idea 

about the compression history, i.e., whether the bitmap comes from a JPEG image or a raw 
bitmap image. Because different types of images have different statistical properties, in this 

paper, we devise two practical FA-steganalyzers to deal with the steganalysis problem of 

heterogeneous bitmap images including raw uncompressed images and JPEG decompressed 
images with different quality factors. During the whole analysis process, the two problems 

above are taken into consideration and analyzed. Finally, compared to the existing 

steganalyzer that is trained on a mixed dataset (noted by a mixed steganalyzer), our proposed 
scheme is proved to have superior performance.  

The rest of the paper is organized as follows. In Section 2, we first simply describe the 

proposed FA-steganalyzer of heterogeneous bitmap images, and then detailedly demonstrate 

the improved image forensics techniques and forensics aided steganalysis techniques which 
are the key techniques involved in the proposed scheme. Some basic assumptions which are 

reasonable in practical applications in order to simplify the construction of FA-steganalyzers 

are firstly given, and then the experimental results and the comparisons with a mixed 
steganalyzer are presented in section 3. Finally, section 4 concludes this paper and gives the 

future research direction. 

2. The Proposed Scheme 

Fig. 1 shows a simple description of the proposed FA-steganalyzer of heterogeneous bitmap 

images including raw uncompressed images and JPEG decompressed images with different 
quality factors. In the proposed scheme, we first employ the image forensics classifier to 

decide the image source, and then send the image to the steganalyzer specially designed to 

work with images of that class. It is obvious that the image forensics technique is one of the 
most important techniques in the proposed scheme. Additionally, How to combine the image 

forensics technique and steganalysis technique is another significant point of the proposed 
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scheme. Subsequently this paper will demonstrate the detailed image forensics technique and 

forensics aided steganalysis technique. 
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Fig. 1. The FA-steganalyzer of heterogeneous bitmap images 

2.1 Image Forensics Analysis 
The image forensics techniques involved in the proposed scheme include identifying JPEG 

decompressed images (i.e., identifying whether a given bitmap image has previously been 
JPEG compressed), and further detecting quantization table of a JPEG decompressed image 

(Fig. 2). 
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Fig. 2. Image forensics analysis 

In [8], Luo et al. developed three novel schemes for image forensics including identifying 

JPEG decompressed images, estimating quantization steps, and detecting quantization tables 

from a bitmap image. However these methods were based on the hypothesis that the image 

under investigation is a cover image. Since the act of embedding further modifies the statistics 
of cover images , it may impose an effect on the results of forensics classification. From Fig. 3, 

we can observe that the features proposed in [8] between uncompressed cover images and 

JPEG decompressed stego images are not separated. 
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Fig. 3. Histograms of the features f proposed in [8] between uncompressed cover, stego images and 

JPEG decompressed ones with QFs (quality factor) 55 and 95 at embedding rate 100% 
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There is a need for methods that can properly identify JPEG decompressed images and detect 

quantization tables in cover and stego images simultaneously. Based on the methods in [8], 
this paper presents the improved methods to identify JPEG decompressed images, and detect 

quantization tables from bitmap images independent of their types (i.e., covers or stegos). 

2.1.1 Identifying JPEG Decompressed Images 

Firstly, we briefly outline the basic process of JPEG . During JPEG compression, an image I  

is first split into disjoint 8 8  pixel blocks, and then the DCT of each block is computed. Next, 

each DCT coefficient is quantized by dividing it by its corresponding entry in a quantization 

table Q , such that a DCT coefficient d  at the block position  ,i j  is quantized to the value 

 ,round / i jD d Q . Finally, an entropy coding is applied to the quantized coefficients and the 

image is said to be JPEG compressed one. In JPEG decompression, the sequence of quantized 

DCT coefficients is entropy decoded and then rearranged into its original ordering, 

Dequantization is performed by multiplying each quantized coefficient by its corresponding 

entry in the quantization table Q , resulting in the dequantized coefficient ,i jd Q D . Finally, 

the inverse DCT (IDCT) of each block of DCT coefficients is computed and the resulting pixel 
values are rounded to the nearest integer. Pixel values greater than 255 or less than 0 are 

truncated to 255 or 0 respectively, yielding the decompressed image J . 

In this paper, the LSB matching steganography [9] is considered as the representative of 

additive noise steganography, the basic model of which is shown in Fig. 4. To elaborate let 
CJ  

be JPEG decompressed cover image, and then let SJ  be JPEG decompressed stego image. 
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Fig. 4. Additive noise steganography model 

namely,  

S C ;J J                                                                            (1) 

Where   is stegonoise, and according to the embedding rule of LSB matching, the probability 

mass function (PMF) of stegonoise   is as follows: 
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Please note that r  is embedding rate, and thus the mean and the variance of the stegonoise   

are    2
0,

2

r
E     . The DCT coefficients of CJ  and SJ  are denoted by random variable 

Cd  and Sd , namely,  C CDCT Jd  ,  S SDCT Jd  , according to (1), we have: 

       S S C C CDCT DCT DCT DCT =J J Jd d                                        (3) 

where  DCT   represents the DCT coefficients of stegonoise  . According to the Central 
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Limit Theorem, we can conclude that   is an approximate Gaussian distribution with mean 0 

and variance 
2

r
. Based on the error analysis in [8], we have: 

       S S C C CDCT DCT DCT DCT  = =J J Jd d d d                             (4) 

Where   denotes the DCT coefficients of the rounding errors introduced by previous JPEG 

decompression, and approximately obeys the Gaussian distribution with mean 0 and variance 

1

12
, and thus the variable        also approximately follows the Gaussian distribution 

with      
1

0, var 0 1
12 2

r
E r      . The probability density function (pdf) and definite 

integral of the variable   are shown in Fig. 5 and Table 1. 
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Fig. 5. Pdfs of variable   at different embedding rates 

Table 1. Definite integrals of variable   at different embedding rates 

r  
2

2

p y dy



  

0 1.0000 

0.1 1.0000 

0.25 1.0000 

0.5 0.9995 

1 0.9911 
 

From Table 1, we have: 

 
2

2

99.11%.p y dy



                                                           (5) 

Let Sp  and 
d

p  be the pdfs of Sd  and d , respectively. Combining (1)-(5), we obtain the 

relationship between 
d

p  and Sp  as follows: 
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Where q  is quantization step ( ,i jq Q ). So we consider the percentage of the ac coefficients of 
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a given test image in the following two specific regions, that is: 

     
1 2

.2, 2 &   3, 2 2, 3 R R         

The relationship between the dequantized coefficient d  and the ac coefficient d  in the 

natural image in previous JPEG compression is as follows: 
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Where 
dp  is the pdf of the ac coefficient d . Based on (6) and (7), we have: 
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Therefore, an improved 1-D feature s  can be obtained as 
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Where 
acp  denotes the pdf of all the ac coefficients of the test image regardless of its type (i.e., 

cover or stego). It is obvious that the feature value of a JPEG decompressed image(cover or 

stego) is close to zero, which is much smaller than that of an uncompressed image.  

2.1.2 Detecting Quantization Table 

In this subsection, we are going to estimate the quantization table of a JPEG decompressed 
image with an unknown embedding rate ranging from 0 to 1. Here, we assume that 

quantization tables are standard tables with quality factors from 1 to 100. 

We define a similar measure R  between two images 1I  and 2I  with the same size of 

M N  as follows: 

        1 2 1 2, ,  , , , ,1 ,1
E

R I I E x y I x y I x y x M y N
MN

                      (11) 

So for a given decompressed image 1J  (cover or stego), we first recompress it with all 

candidate tables, i.e., quality factors ranging from 1 to 100, and obtain the corresponding 

decompressed images  2 iJ . Then the detected quality factor QF


of a decompressed image 1J  

regardless of cover and stego can be defined as: 

   1 2arg max , .
i

QF Q J J i


                                                              (12) 

Where      
      

      

1 2 1 2

1 2 1 2

1 2 1 2

, ,

, , 1 0;

, , 1 0.
Q J J i R J J i

R J J i R J J i

R J J i R J J i


    
 

    

 1,2,...,100i   

Fig. 6 shows the similar measure R  as a function of quality factors for JPEG decompressed 
images with embedding rates 25% and 50%. It is observed that the position at which the 

maximum value of the peak values appears is the corresponding quality factor. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 8, Aug 2012                                   1933 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
0

0.2

0.4

0.6

0.8

1

Quality Factors

P
(J

1
=

J2
)

JPEG decompressed stego image with r=25%

QF=85

 
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

0

0.2

0.4

0.6

0.8

1

Quality Factors

P
(J

1
=

J2
)

JPEG decompressed stego image with r=50%

QF=85

 

Fig. 6. Percentages of the pixel values as functions of quality factors for JPEG decompressed images 

with the quality factor 85 

2.2 Forensics-aided Steganalysis 

2.2.1 Structure of Proposed FA-steganalyzer 

In this part, combining the image forensics techniques presented in section 2.1, two practical 
FA-steganalyzers for heterogeneous bitmap images are constructed, which can properly 

handle steganalysis problems for mixed image sources consisting of raw uncompressed 

images and JPEG decompressed images with different quality factors. 
The overall architectures of the proposed two FA-steganalyzers called S1 and S2 are 

depicted in Figs. 7 and 8. As for the first FA-steganalyzer scheme, in the training phase, two 

versions of the same or different steganalyzers trained on images belonging to raw 

uncompressed images and mixed JPEG decompressed images with different quality factors 

are built (Fig. 7(b)). Let us call the two steganglyzers 1 2SA ,  SA .  At the same time, a JPEG 

decompressed image identifier i.e., the forensics classifier A is trained to distinguish between 

images belonging to the two classes (Fig. 7(a)). In the testing phase, we first use a JPEG 
decompressed image identifier to classify the image at hand as one of the two classes, and then 

use the version of the steganalyzer that was trained on the correct class of images (Fig. 8). For 

the second FA-steganalyzer scheme, in the training phase, different from the first 

FA-steganalyzer, N  versions of the same or different steganalyzers trained on JPEG 

decompressed images with corresponding quality factors are established (Fig. 7(c)). Let us 

call such steganalyzers 1 2SB ,SB ,...,SBN . In the testing phase, we further estimate quality 

factors of JPEG decompressed images, and then send the images to the steganalyzers that were 

trained on the corresponding quality factors (Fig. 8). 
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Fig. 7. Structures of the two FA-steganalyzers: training phase 

As for the first FA-steganalyzer S1, the key steps of the core training algorithm are 

summarized as follows: 

Step 1: for heterogeneous bitmap images in the training set, extract improved features s  

according to equation (10), and then train the forensics classifier A using the features s  above; 

Step 2: for uncompressed images in the training set, extract certain steganalytic features 

(such as WAM, LLTCF, LLTPDF and RDIH in section 3.1), and then train the steganalyzer 

1SA  using the steganalytic features above; 

Step 3: for mixed JPEG decompressed images with N kinds of different quality factors in 

the training set, extract certain steganalytic features (such as WAM, LLTCF, LLTPDF, RDIH, 

1D and CAM), and then train the steganalyzer 2SA  using the steganalytic features above;  

As for the second FA-steganalyzer S2, the first two steps are identical with those of the first 

FA-steganalyzer S1, while the following steps are listed as follows: 

Step 3: for JPEG decompressed images with a specified quality factor jQ  ( 1,2,...,j N ) in 

the training set, extract certain steganalytic features (such as WAM, LLTCF, LLTPDF, RDIH, 

1D and CAM in section 3.1), and train the steganalyzers 1 2SB ,SB ,...,SBN , respectively.  

It should be noted that the steganalytic feature for uncompressed images and that for JPEG 

decompressed images could be same or different. Morover,the training processes of forensics 

classifier A and various steganalyzers 1 2 1 2SA ,SA ,SB ,SB ,...,SBN  are independent mutually. 
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Fig. 8. Structures of the two FA-steganalyzers: testing phase 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 8, Aug 2012                                   1935 

2.2.2 Error Probability of Proposed FA-steganalyzer 

The performances of the two FA-steganalyzers depend on several factors, including the error 

probability of the forensics classifier A, the error probabilities of the various steganalyzers 
when applied to images belonging to the various classes, and the error probability of the 

quantization table detector. To elaborate let S1

eP  and S2

eP  be the overall error probabilities of 

the two FA-steganalyzers. Let  iP I  be the prior probability of the i-th class image 

( 1,2,..., 1i N  ). Where 
1 2, ,..., NI I I  stand for JPEG decompressed images with N kinds of 

different quality factors, while 
1NI 
 stands for the uncompressed image. Let then  AC

kP C i  

( 1,2k  ) be the probability that a JPEG decompressed image identifier classifies an image 

coming from 
i

I  as the uncompressed image (denoted by 
1C ) or the JPEG decompressed 

image (denoted by 
2C ).  SA

e
kP i  or  

SB

e jP i  is the probability that the steganalyzer SA  k
 or 

 SB j  makes an error when asked to classify an image belonging to 
iI . Finally,  BC

jP Q i  is 

the probability that the quantization table detector detects the quality factor of an image 

belonging to 
iI  as jQ   1,2,...,j N . 

The overall error probabilities of two FA-steganalyzers are derived in the following forms: 
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If the forensics classifier A in charge of identifying JPEG decompressed images is balanced, 

i.e. it has the same error probability regardless of the class the image belongs to, and then we 

assume that the prior probabilities of the 1N   classes are equal, we have: 

     A A AC C C

2 1 1

1

1
1 1,2,...,

N

i

P C N P C N P C i
N 

                                          (15) 

The correct probabilities of the forensics classifier A are also same, namely, 

     A A AC C C

1 2 2

1

1
1 1,2,...,

N

i

P C N P C N P C i
N 

                                          (16) 

Take S1

eP  for example, and based on (15) and (16), we have: 
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Where  AC

2P C i  and  AC

1P C i  indicate the probabilities that the forensics classifier A makes 

a correct and a wrong decision for JPEG decompressed images, respectively. Since we assume 

that    1 2SA SA

e e1 1P N P N    and    2 1SA SA

e e ( 1,2,..., )P i P i i N  , it is evident that the higher 

the error rate of the forensics classifier A the worse the performance of the first 
FA-steganalyzer. We expect that the observation obtained above can also be applied to the 

second FA-steganalyzer. Additionally, it is expected the second FA-steganalyzer S2 has a 

superior detection performance in comparison with the first steganalyzer S1, since the match 

between the training set and the testing set is much more exact. 

3. Experimental Results 

3.1 Experimental Setup 
In our experiment, we first give some basic assumptions which are reasonable in practical 

applications in order to simplify the construction of FA-steganalyzers. The first assumption 

concerns the source of cover images. We assume cover images have been preclassified by a 
source identification forensics tool before, and since most of images are acquired by digital 

cameras, the cover images under investigation were taken from several common cameras like 

Canon, Nikon, Sony and so on. The second assumption concerns the selection of quality 
factors. We assume that quantization tables are standard tables with quality factors from 50 to 

95 at intervals of five as widely used in many other steganalysis and forensics works. 

Based on the assumptions above, the CAMERA [10] database is used as the image source in 
our experiment and 1600 images are randomly selected from it. Please note that in the 

beginning, the images are divided into a training set containing 600 raw bitmap images and a 

testing set containing 1000 raw bitmap images. Moreover, half of the training set is used to 

train the forensics classifier A, while the remaining is used to train each homogeneous 
steganalyzer. The following image processing operations are performed on the training set and 

the testing set in exactly the same way. 

These original color images are first center-cropped into 256×256 pixels, and then 

converted into gray scales. Next, the JPEG compression is applied to them with quality factors 

from 50 to 95 at intervals of five. Finally we get the final JPEG decompressed images after 

decompression.  
The cover database contains both uncompressed bitmap images and corresponding JPEG 

decompressed bitmap images with ten kinds of different quality factors. Then we perform LSB 

matching steganography with embedding rate 10%, 25%, 50% and 100% on the cover 
database to obtain the stego database.  

We use a classifier based on Fisher Linear discriminant to train and test. The total number of 

images in the training set is (600+600×10)×(4+1)=33000, while the total number of images 

in the testing set is (1000+1000×10)×(4+1)=55000.  

For our experiments, two targeted steganalyzers (named LLTCF [11] and RDIH [12]) for 

LSB matching steganography, one targeted steganalyzer (named CAM [13]) designed for LSB 
matching steganography in JPEG decompressed images, one blind steganalyzer (named 1D 

[14]) for additive noise steganography in JPEG decompressed images and two blind 

steganalyzers (named WAM [15] and LLTPDF [16]) are taken into consideration. 

(1) LLTCF: local linear transform and weighted features of characteristic functions; 
(2) RDIH: the peak-value and renormalized histogram of difference images; 

(3) 1D: the area ratio between different ranges of normalized ac coefficients histogram; 

(4) CAM: the first 10 order central absolute moments of noise residuals in DCT domain of 
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JPEG decompressed images;  

(5) WAM: the higher-order absolute moments of the noise residual in the wavelet domain;  
(6) LLTPDF: normalized histogram of the local linear transform coefficients of the image. 

3.2 Image Forensics Analysis 

3.2.1 Identifying JPEG Decompressed Images 

According to (10), we calculate the features s  for the original uncompressed images and their 

different JPEG compressed versions and show the corresponding histograms in Figs. 9 and 10. 

Fig. 9 shows the histograms among mixed covers and stegos at embedding rates 25% and 
100% between uncompressed images and JPEG decompressed images with quality factors 90 

and 95. We can note that even for 100% embedding the features are also mostly disjoint. To 

further show the effectiveness of the improved feature, we randomly select the quality factors 

in the range of 50-95. The histograms of the features at different embedding rates 10%, 25%, 
50% and 100% are presented in Fig. 10, which indicates our improved feature is less sensitive 

to the embedding message even for 100% embedding,while the feature proposed in [8] is easy 

to influnced by the embedding message(see Fig. 3). So our improved feature could obtain 
good results in mixed covers and stegos. 
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Fig. 9. Histograms of the features s  for mixed uncompressed cover, stego images and corresponding 

JPEG decompressed ones with QFs=90 and 95 at different embedding rates 25% and 100% 
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To properly test the improved feature s , we first use a minimal error probability rule to find a 

threshold t. For a given embedding rate in the training stage, half of the uncompressed images 

(covers and stegos) and the corresponding JPEG decompressed images (covers and stegos) 

with QF=95, the highest quality factor the proposed feature can detect reliably, are employed 
to obtain a proper threshold. These thresholds are then used to detect the rest of the JPEG 

decompressed images with QF=95, and all the other JPEG decompressed images with QFs 

from 50 to 90 at intervals of five. The experimental results are shown in Table 2. Here we 

define Tpp  as the probability of JPEG decompressed images being correctly determined as 

JPEG decompressed images while 
Fpp  is the probability of uncompressed images being 

wrongly determined as JPEG decompressed images and 
Fnp  is the probability of JPEG 

decompressed images being wrongly determined as uncompressed images. From Table 2, we 
can observe that our improved method can achieve satisfactory accuracy of around 98% even 

with the embedding rate 100%. It can be expected that the good performance of the forensics 

classifier A will be beneficial to the following steganalysis. 
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Fig. 10. Histograms of the features s  for mixed uncompressed cover, stego images and corresponding 

JPEG decompressed ones with QFs randomly selected in [50,95] at different embedding rates 10%, 

25%, 50% and 100% 
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Table 2. 
Tpp  (%) for JPEG decompressed image identification between mixed covers and stegos. The 

thresholds are 0.0742, 0.0730, 0.0737 and 0.0777 for different embedding rates, and the 
Fpp  (%) we 

obtained are 16.79, 14.75, 12.47 and 10.38 

Embedding 

Rate 

Quality Factor 

50 55 60 65 70 75 80 85 90 95 

10% 100 100 100 100 100 100 100 100 100 98.73 

25% 100 100 100 100 100 100 100 100 100 98.49 

50% 100 100 100 100 100 100 100 100 100 99.07 

100% 100 100 100 100 100 100 100 100 100 99.58 

3.2.2 Detecting Quantization Table 

In our experiment, for a given JPEG decompressed image (cover and stego), we recompress it 

with all the candidate tables and obtain the corresponding recompressed versions in the spatial 
domain, and thus (12) is employed for the quality factor estimation. To show the effectiveness 

of our improved method, we compare our improved method with [17] proposed by Luo et al. 

and present the experimental results in Table 3. 
 

Table 3. Accuracies (%) for quantization table detection for decompressed images with different 

quantization tables and embedding rates using the two methods 

Embedding 

Rate 

Detection 

Method 

Quality Factor 

50 55 60 65 70 75 80 85 90 95 

Cover 
Luo [17] 14.2 89.6 72.7 93.1 87.5 32.8 91.6 78.5 98.7 97.4 

Proposed 83.3 100 99.7 100 100 93.1 100 100 100 100 

10% 
Luo [17] 68.2 95.1 93.5 96 96.2 83.1 98.1 99.2 100 100 

Proposed 82.9 100 99.7 100 100 93.1 100 100 100 100 

25% 
Luo [17] 73.2 96 95.8 97.3 97.5 86.9 98.7 99.6 100 100 

Proposed 82.9 99.7 99.7 100 99.7 93 100 100 100 100 

50% 
Luo [17] 78.3 98 97.5 98.2 98.6 89.3 99.5 99.7 99.8 99.9 

Proposed 82.7 99.7 99.7 100 99.6 93 100 100 100 96 

100% 
Luo [17] 81.5 99.5 99.2 99.5 99.5 91.3 99.7 99.6 55.8 99.9 

Proposed 81.2 99.8 99.4 99.9 99.7 92.4 99.8 99.8 80 58.7 

 

From Table 3, it is obvious that our improved method outperforms the existing method [17] 

significantly in most cases. The highest accuracy for a given quality factor is in boldface. 
Please note that the accuracy is relatively lower for detecting the JPEG decompressed images 

with QFs=50 and 75. The reason is that the first 19 quantization steps (along the zigzag 

scanning order) in the quantization tables with quality factors 49, 50, and 51 are exactly the 

same. As for JPEG decompressed images with QF=75, according to experimental results we 
find JPEG decompressed images with QF=75 are wrongly detected as QF=73 or 74. So it does 

not much influence the performance of steganalysis. and thus the error of detecting 

quantization table can be neglected. So in this paper we only focus on the error of identifying 
JPEG decompressed images in the part of image forensics analysis. 
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3.3 Forensics-aided Steganalysis 
In our experiment, our proposed FA-steganalyzers will be compared to the existing 
steganalyzer that is trained on a mixed dataset (noted by a mixed steganalyzer) (Fig. 11). 

 

Heterogeneous 

bitmap images

Cover images/

Stego images

Steganalyzer trained on 

a mixed database

 

Fig. 11. Structure of a mixed steganalyzer 

To evaluate the performances of the proposed two FA-steganalyzers, it is necessary to set the 
decision thresholds of the corresponding classifiers including the forensics classifier A and 

various steganalyzers. Then, the various error probabilities and overall error probabilities will 

be obtained within the equations (13) and (14). Take S1

eP  for example, firstly, let ,i kA  be the 

number that a JPEG decompressed image identifier assigns cover images coming from 
i

I  to 

SA  k , while ,i kB  stands for the number that a JPEG decompressed image identifier assigns 

stego images coming from 
i

I  to SA  k
. Then, ,i kH  indicates the number that the steganalyzer 

SA  k
makes an error when asked to classify cover images belonging to 

iI , while ,i kL  is the 

number that the steganalyzer SA  k
makes an error when asked to classify stego images 

belonging to iI . Finally, M  is the number of cover images or stego images belonging to iI  

(1 1i N   , 1,2k  ), and thus we have, 
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Where k  is the proportion of the total number of testing set on the steganalyzer SA  k to entire 

testing set, while k  and k  represent the ratios of cover and stego images on the steganalyzer 

SA  k . Fp

kP  and Fn

kP  stand for the probability of false positive (detecting cover as stego) and 
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probability of missed detection (false negative) on the steganalyzer SA  k
.  

But please note that all the combinations of decision thresholds within the considered 
interval will tend to be too broad, thereby resulting in great complexity and large storage. So in 

this paper, we first set the decision threshold of the forensics classifier A, and then 
1 2 ，  will 

be obtained, and based on (18) we have, 
 

   
2

S1 1 1 2 2 1 2

Err e 1 1 Fp 1 Fn 2 2 Fp 2 Fn 1 Err 2 Err Err
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min( ) min min k

k
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PP P P P P P P P        


         (19) 

 

Where 
Err

kP  is the minimal average decision error of the steganalyzer SA  k
. 

We expect that the derivation process above can also be applied to the second 
FA-steganalyzer. So the entire minimal average decision error of the FA-steganalyzer can be 

calculated in the following expressions under the assumption that N is 10 in section 3.1: 

 

   S

Err e Err Err Fp Fn

1

2,               =1
min ,   ,   min
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xM
x i i i i

i x i i
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P P P M P P P

N x
  




    

 
             (20) 

 

Where 
xM  is the total number of steganalyzers, 

i  is the proportion of the total number of 

testing set which has been preclassified on the i-th homogeneous steganalyzer to entire testing 

set, and 
Err

iP  is the minimal average decision error of the i-th homogeneous steganalyzer. In 

addition, Fp

iP  and 
Fn

iP  stand for the probability of false positive and probability of false 

negative on the i-th homogeneous steganalyzer while i  and i  represent the ratios of cover 

and stego images on the i-th homogeneous steganalyzer.  
The minimal average decision error of a mixed steganalyzer noted by S3 will be calculated 

in the following equation under equal probability of cover and stego images:  

 

 Err Fp Fn

1
min

2
P P P                                                               (21) 

 

As is known to all, a mismatch between the statistics of the training set and those of the 
testing set can significantly decrease the performance of a steganalyzer, so how to set the 

decision threshold of the forensics classifier A to balance each homogeneous steganalyzer and 

further to get the best overall detection performance is a key issue. We adopt an experimental 
procedure to explore this issue by designing the following three setups L1, L2 and L3. 

(a) L1: providing the forensics classifier A makes a fully correct classification; 

(b) L2: using a minimal error probability rule (    uncom Fp decom FnErr =P p C p p C p  ) to find a 

threshold t  in the training stage; 

(c) L3: using almost equal error ( Fp Fnp p ) rule to find a threshold t  in the training stage, 

where  uncomp C ,  decomp C are the prior probabilities of the two classes. 

According to three setups L1, L2, L3 above, we can obtain corresponding decision 
thresholds for different embedding rates respectively, which are then used to preclassify the 

images of testing set .After that, i , i , Fp

iP , Fn

iP , i  will be computed, which are used within 

the equation (20) to obtain the overall minimal average decision errors ErrP  of the two 

FA-steganalyzers. The experimental results are shown in Table 4, 5 and 6. Please note that the 
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best detection accuracies for different embedding rates are in boldface. 

Table 4. Minimal average decision errors (%) of  two FA-steganalyzers (S1 and S2) equipped with an 
error-free forensics classifier A (L1) and a mixed steganalyzer (S3) at four different embedding rates for 

different steganalyzers 

Embedding 

Rate 
 

Steganalyzer 

WAM LLTCF LLTPDF RDIH 
LLTCF 

+1D 

LLTCF 

+CAM 

10% 

S2 14.428 3.212 3.571 10.166 4.532 3.702 

S1 18.122 3.751 5.032 14.083 8.026 4.626 

S3 22.227 9.882 9.458 17.372   

25% 

S2 7.709 0.846 1.473 4.422 0.487 0.501 

S1 10.019 1.035 2.347 6.198 3.669 0.549 

S3 12.193 3.175 4.655 8.500   

50% 

S2 5.531 0.273 0.846 2.207 0.151 0.141 

S1 7.167 0.388 1.386 3.235 0.161 0.138 

S3 8.971 0.973 2.694 3.981   

100% 

S2 4.176 0.090 0.498 1.381 0.028 0.034 

S1 4.755 0.150 0.735 1.654 0.030 0.033 

S3 6.187 0.355 1.638 1.819   

Table 5(a). Tpp , Fpp , ErrP  (%) for JPEG decompressed image identification between mixed covers 

and stegos .The thresholds are 0.0746, 0.0731, 0.0733 and 0.0775 for different embedding rates 

according to minimal error probability rule (L2) in the training phase 

Embedding 

Rate 
Tpp  (%) Fpp  (%) ErrP  (%) 

10% 99.950 16.850 1.577 

25% 99.865 14.650 1.454 

50% 99.890 12.100 1.200 

100% 99.975 10.500 0.977 

Table 5(b). Minimal average decision errors (%) of  two FA-steganalyzers (S1 and S2) and a mixed 

steganalyzer (S3) at four different embedding rates for different steganalyzers 

Embedding 

Rate 
 

Steganalyzer 

WAM LLTCF LLTPDF RDIH 
LLTCF 

+1D 

LLTCF 

+CAM 

10% 

S2 14.849 3.841 4.178 10.792 5.211 4.394 

S1 18.636 4.436 5.706 14.638 8.731 5.282 

S3 22.227 9.882 9.458 17.372   

25% 

S2 8.275 1.401 1.843 5.077 1.275 1.291 

S1 10.627 1.618 2.840 6.929 4.414 1.283 

S3 12.193 3.175 4.655 8.500   

50% 

S2 6.121 0.371 0.943 2.280 0.896 0.668 

S1 7.891 0.461 1.616 3.383 0.912 0.859 

S3 8.971 0.973 2.694 3.981   

100% 
S2 4.830 0.105 0.541 1.385 0.330 0.503 

S1 5.488 0.163 0.758 1.689 0.793 0.693 

S3 6.187 0.355 1.638 1.819   
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Table 6(a). 
Tpp , 

Fpp , 
Fnp , ErrP  (%) for JPEG decompressed image identification between mixed 

covers and stegos. The thresholds are 0.0568, 0.0586, 0.0596 and 0.0629 for different embedding rates 

according to equal error probability rule (L3) in the training phase 

Embedding 

Rate 
Tpp  (%) 

Fpp  (%) 
Fnp  (%) ErrP  (%) 

10% 94.430 5.600 5.570 5.572 

25% 95.050 5.350 4.950 4.981 

50% 95.545 4.800 4.455 4.486 

100% 95.605 4.900 4.395 4.440 

Table 6(b). Minimal average decision errors (%) of  two FA-steganalyzers (S1 and S2) and a mixed 
steganalyzer (S3) at four different embedding rates for different steganalyzers 

Embedding 

Rate 
 

Steganalyzer 

WAM LLTCF LLTPDF RDIH 
LLTCF 

+1D 

LLTCF 

+CAM 

10% 

S2 16.545 5.923 5.980 12.710 6.134 6.404 

S1 20.158 6.410 7.410 15.630 8.283 7.317 

S3 22.227 9.882 9.458 17.372   

25% 

S2 9.987 2.311 3.168 6.355 2.031 2.152 

S1 12.169 2.583 4.285 8.023 3.196 2.195 

S3 12.193 3.175 4.655 8.500   

50% 

S2 7.250 0.378 1.889 2.410 0.573 0.438 

S1 8.834 0.474 2.630 3.362 0.582 0.548 

S3 8.971 0.973 2.694 3.981   

100% 

S2 5.538 0.102 0.837 1.412 0.056 0.175 

S1 5.980 0.165 1.063 1.727 0.349 0.309 

S3 6.187 0.355 1.638 1.819   

According to the experimental results, we can draw the following conclusions:  
(1) With regard to the selection of decision thresholds of the forensics classifier A, from 

Table 4, 5 and 6, we can observe that when the decision thresholds found using a minimal 

error probability rule in the training stage are employed to preclassify the testing set, the 
overall minimal average decision errors of the two FA-steganalyzers are mostly close to that 

under the assumption that the forensics classifier A makes a fully correct decision. It means 

that the set up L2 could provide a more reliable detection than L3. 

(2) From Table 5(b), we can conclude that the detection performances of our proposed 
FA-steganalyzers outperform significantly a mixed steganalyzer. Take WAM for example, 

when the embedding rate is 10%, the minimal average decision error of the second 

FA-steganalyzer S2 reduces by up to 7%. Furthermore, as already expected the detection 
power of the second FA-steganalyzer S2 is better than that of the first FA-steganalyzer S1 in 

most circumstances.  

(3) In the last two columns of Table 5(b), for uncompressed images, we adopt the targeted 
steganalyzer LLTCF because of its good performance across a wide variety of steganalyzers 

[11], while for the kind of JPEG decompressed images, we select the steganalyzers named by 

1D and CAM. Experimental results show that the detection performance of LLTCF+1D or 

LLTCF+CAM is almost best among all the steganalyzers except for LLTCF in some cases, 
which demonstrates the validity of such combination i.e., easing the steganalysis of 
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heterogeneous images with different compression history.  

In a word, the main contributions of this paper can be summarized as follows: (1) the 
forensics classifier A and quantization table detector can recognize the type of the testing 

image, thus ensuring a match between the statistics of the taining set and those of the testing 

set; (2) instead of trying to construct a steganlyzer capable of handling heterogeneous images, 

we only need to use steganalyzers specially designed for uncompressed images and JPEG 
decompressed images respectively.  

4. Conclusions 

In this paper, we devise two efficient forensics-aided steganalyzers to deal with the 

heterogeneous bitmap images including uncompressed bitmap images and decompressed 

bitmap ones with different quality factors. Moreover, we also explore image forensics 
techniques under the assumption that the images under investigation are mixed covers and 

stegos, and how to set the decision threshold of image forensics classfier to balance each 

homogeneous steganalyzer. Experimental results show that the detecting performances of the 
two FA-steganalyzers are relatively best when we use a minimal error probability rule to find a 

threshold in the training stage and our proposed two forensics-aided steganalyzers outperform 

a mixed steganalyzer; Finally, it should be noted that selecting the best steganalysis algorithm 
for the particular cover class can achieve much more reliable detection than employing the 

same steganalysis algorithm in spite of the type of cover source preconditioned by good 

performance of image forensics classifier. The development of FA-steganalyzers capable of 

handling more complex heterogeneous images is our future research direction. 
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