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ABSTRACT. We propose an efficient method to measure the insurance risk of causality insurance 
companies by using the CreditRisk+ methodology. This method is superior to previous methods in 
several aspects. Its computation speed is very fast and the input data form is simple. It is able to 
aggregate both credit risk and insurance risk, so the insurance company can manage the risk in 
combined manner. In this paper, we propose a mathematical method to obtain the aggregate loss 
distribution of portfolios having correlation among products or business lines as a general case, and 
then suggest its implementation algorithm. Finally we apply this method to the real data from 
Korea Insurance Development Institute (KIDI) and discuss its availability to real applications.  

1. INTRODUCTION 

The insurance company has several kinds of risks which result from the type of insurance 
business transacted. The International Association of Insurance Supervisors (IAIS) classifies   
risks of insurance company into Insurance risk, Asset risk and other risks. According to IAIS, 
“the insurance risks (equivalently, technical risks) represent the various kinds of risk that are 
directly or indirectly associated with the technical or actuarial bases of calculation for 
premiums and technical provisions in both life and non-life insurance, as well as risks 
associated with operating expenses and excessive or uncoordinated growth. … They differ 
depending on the class of insurance. Insurance risks exist partly due to factors outside the 
company's area of business activities, and the company often may have little influence over 
these factors. The effect of such risks - if they materialise - is that the company may no 
longer be able to fully meet the guaranteed obligations using the funds established for this 
purpose, because either the claims frequency, the claims amounts, or the expenses for 
administration and settlement are higher than expected.” 
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The insurance risk is a kind of intrinsic risk which is more difficult to measure than other 
risks. The development and implementation of efficient mathematical algorithms to measure 
exact insurance risks are necessary and urgent for introducing RBC (risk based capital) 
solvency margin system to Korean insurance industry. In order to measure insurance risk in 
some manner and apply it to solvency margin system for insurance company we need to 
estimate a loss distribution for each product or each business line firstly, to aggregate the loss 
distributions considering correlations among them secondly, so to have an aggregate loss 
distribution finally. We propose an efficient methodology to estimate an aggregate loss 
distribution for measuring the insurance risk in this paper. 

The estimation of the aggregate loss distribution, the first and essential step for measuring 
the risks of insurance company, enables the insurance company to calculate VaRs(Value at 
Risk) according to each business line, each asset class, and each liability, and finally the 
firm-wide aggregated VaR which results in measuring the economic capital or the RBC 
solvency margin. And we can calculate the appropriate risks which will be prepared for 
future, by generating the future loss distribution using the aggregated current loss 
distribution combined with scenario analysis or stress test or DFA (Dynamic Financial 
Analysis).  

The estimation of loss distribution has been studied by several researchers in traditional 
actuarial science. Heckman and Meyers (1983) estimated the severity and the frequency of 
each business lines, exactly the characteristic functions of them using the collective risk 
theory, and got the aggregated loss distribution by convolution. Robertson (1992) adapted the 
same manner and proposed a more efficient convolution method, discrete Fourier transform, 
DFT). The convolution methods have been done under the assumption of independent 
business lines, but there exists correlations among them in real cases. You can see how to 
estimate the correlated aggregate loss distribution in Wang (1998). 

Such traditional methods, however, have several shortcomings. The estimation of loss 
distribution is made either by parametric methods or by nonparametric method. It is well-
known that the parametric method cannot capture the rare event probability, especially for 
loss distribution and the nonparametric demands too much times. Even the worse, those 
traditional methods cannot meet practical needs in measuring the aggregated risks of market 
risks, credit risks, and insurance risks and so on. The usual measuring methodologies of 
market, and credit risk have been developed in terms of VaR, and the insurance risk 
measured by those traditional ones cannot be aggregated into VaR framework. 

In this paper, we suggest a methodology to overcome those shortcomings and to help the 
insurance company manage the insurance risk in view of aggregated risk management with 
market, and credit risks because it belongs into VaR framework. Its algorithm is modified 
from that in CreditRisk+. Furthermore, our algorithm is simple to implement and fast to 
estimate the loss distribution. 

CreditRisk+ is a credit risk measuring methodology to estimate the loss distribution of 
credit portfolio which consists of loans, default able bonds and so on. It is being used by 
many financial institutions all over the world for measuring credit VaRs and managing credit 
risks since its algorithm has been offered firstly by CSFB (Credit Suiss First Boston). And it 
adapts a nonparametric and analytic approximation to the whole probability distribution so 
as to be fast in estimating a loss distribution. This is why various kinds of financial 



An Efficient Algorithm To Measure The Insurance Risk 139

institutions have adopted it as a method to measure credit risks. As results it has been well 
developed for practical applications of creditVaR in capital allocation and Risk-Adjusted 
Performance Measurement (RAPM). We study how to apply the CreditRisk+   
methodology to measure the insurance risk of causality insurance company in this paper. 
And we sample a real loss data set classified according to business lines from Korea 
Insurance Development Institute to apply our method and to estimate the loss distribution 
coming from insurance risks. 

Our method has good points when insurance companies manage the firm-wide risk in 
view of the aggregated risk management. 

First, they can get the aggregated VaR when they use our method to measure their 
insurance risks and CreditRisk+ to measure their credit risks. It is of consequence to the 
insurance company which has individual loan portfolios because only CreditRisk+ is 
applicable for those portfolios.  

Second, our algorithm is so fast even though it is nonparametric. As we mentioned above, 
our algorithm is a kind of nonparametric and analytic approximation which overcomes the 
shortcoming of nonparametric methods-the slow converging rate. Another nonparametric 
methods demand us too much computing times to get a desirable error bound. 

Third, the input data format to our risk-measuring model is very simple. Our model 
assumes the multivariate normal distribution for severity and we estimate correlations 
between each business lines using serial data of severities to plug them into our model in 
simple manner. 

Fourth, our model loosens the assumption of independence among business lines which is 
taken in CreditRisk+. The independent sectors assumption in CreditRisk+ is too strict for 
practitioners to meet, so that they may hesitate to apply the estimating VaR to capital 
allocation and RAPM because they ignore the assumption of independent sectors to a certain 
extent.  

This paper is composed as the followings; we will explain CreditRisk+ methodology 
briefly in Chapter 2. In Chapter 3 we will explain in detail how to apply CreditRisk+ to 
estimate the loss distribution combining severity and frequency in each case of independent 
business lines and correlated business lines, and in Chapter 4, two mathematical algorithms 
to estimate the loss distribution: the recursive method and the FFT method. In Chapter 5 we 
will apply our algorithm to real data set from Korea Insurance Development Institute to get 
the aggregated loss distribution. We will conclude in Chapter 6. 

  

2. CREDIT RISK+ METHODOLOGY 

In this chapter we explain the CreditRisk+ methodology (CSFP, 1997) briefly. We 
consider a   portfolio exposed to credit risks by K  obligors. We assume that all obligors 
are affected by N  risk factors 1 2( , ,..., )NS S S S . Let Ap  and A  be the expectation 

and the standard deviation of default probability for obligor A  and let Akw  be the weight 

of risk factor kS  for obligor A . Such weights have to satisfy
1

0 1, 1
N

Ak Ak
k

w w


   . Thus 
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N

Ak
k

w

  specifies the systematic risk for obligor A , while 0

1

1
N

A Ak
k

w w


   represents the 

weight of idiosyncratic risk, which is independent of risk factors 1 2( , ,..., )NS S S S , of 

obligor A . 
Consider the potential loss A  for obligor A . It is one of the features of CreditRisk+ to 

work with discretized losses. For this purpose we fix a loss unit 0L  and choose a positive 

integer A  as a rounded version of 0/A L . Then the aggregate portfolio loss in 

CreditRisk+ as a multiple of the basic loss unit 0L  is given by 

A A
A

X D  

with AD  being Poisson distributed random variables with stochastic intensities  

0
1

N
S
A A A Ak k

k

p p w w S


 
  

 
  

conditional on independent gamma distributed random variables 1 2( , ,..., )NS S S S . Then 

we can obtain the expectation k  and the standard deviation k  for , 1, 2, ,kS k N      

,k Ak A k Ak A
A A

w p w     . 

We introduce the portfolio polynomial of the k -th factor to be  
 

( ) , {0,1,2, , }A
k Ak A

A

Q z w p z k N   . 

Then the PGF(probability generating function) of the CreditRisk+ model can be 
expressed in closed analytic form 

2 2

0 0 2 2
1

( ) exp ( ( ) (1)) ln 1 ( ( ) (1))
N

k k
k k

k k k

G z Q z Q Q z Q
 
 

  
      

   
 . 

On the other hand, from the definition of the PGF of a discrete, integer-valued random 
variable, we know that ( )G z  may also be represented as  

0

( ) ( ) j

j

G z P X j z




  . 

Thus the central problem is the efficient and numerically stable computation of the 
probabilities ( )P X j . It is known that the algorithm advocated in the original 
CreditRisk+ document in order to the probabilities, the Panjer recursion scheme, is 
numerically unstable. Giese(2003) has suggested the method to calculate the probabilities 
directly by applying standard algorithms for logarithm and exponential of power series. 
However, the numerical stability was analyzed by Haaf, Reiβ and Schoenmakers(2004). An 
alternative algorithm using FFT(fast Fourier transform) is established by Reiβ(2004), which 



An Efficient Algorithm To Measure The Insurance Risk 141

is described in terms of characteristic function instead of PGF. This algorithm is easy to 
implement and is numerically stable, so it may also be applied for large portfolios. 

While the above researches have assumed independent risk factors, there are several researches 
considering the correlation between risk factors. Bürgisser, Kurth, Wagner and Wolf(1999) have 
proposed a model with a single factor approach to correlation, and Giese(2004) has 
discussed two multivariate factor distributions, multivariate gamma distribution and compound 
gamma distribution), which include risk factor correlations. However, using these methods for dealing 
with any correlations there is a limit. 

 
 

3. THE METHODOLOGY TO ESTIMATE THE INSURANCE LOSS DISTRIBUTION 

In this chapter we explain the algorithm to get the PGF for the loss distribution using 
CreditRisk+ in each cases of one business line, independent business lines, and correlated 
business lines. 

3.1. A case of only one business line 

First, for a case of only one business line, the method for estimating the loss distribution 
of severity for given frequency are described. For this we have to calculate the PGF ( )mF z  

of severity for m  events.  

Suppose the severity distribution for i -th event of m events is given as follows: 

Loss Level Loss Probability 

1 0L  
1
ip  

2 0L  
2
ip  

    

0M L  i
Mp  

Loss levels 1 2, , , M   are positive integers and 1 2 M     . If each event is 

independent, the PGF of severity for m  events is 

 
1 1 11 1

( ) 1 1 1j j

m mM M M
i i i

m j j j
j j ji i

F z p p z p z 

   

   
        

   
     

Also, if we assume 1 2 m
j j j jp p p p     for 1,2, ,j M  , the  PGF is represented 

by 

 
1

( ) 1 1j

m
M

m j
j

F z p z



 
   
 

 . 
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Now, given frequency distribution, we have to estimate the loss distribution combined 
with severity distribution. Assume that frequency distribution is Poisson distribution with 
parameter  . Then the PGF ( )G z  of loss distribution is  

(1)             
0 1

( ) ( ) exp 1
!

j

m M

m j
m j

G z F z e p z
m

 




 

  
    

   
   

3.2. A case of independent business lines 

Assume that N  business lines are independent. Let k  be the Poisson parameter of 

severity distribution for k -th business line and the severity distribution for k -th business 
line is given as follows:  

Loss Level Loss Probability 

1 0
k L  1

kp  

2 0
k L  2

kp  

    

0k

k
M L  

k

k
Mp  

Loss levels 1 2, , ,
k

k k k
M    are positive integers and 1 2 k

k k k
M     . Because the 

business lines are independent, using equation (1) the PGF ( )G z of N  business lines is 
represented by  

   
1 1 11

( ) exp 1 exp 1
k kk k

j j

M MN N
k k

k j k j
j k jk

G z p z p z  
  

      
         

         
   . 

We can assume that 1 2 NM M M M     without loss of generality, and if we 

assume that 1 2 N
j j j j        for 1, 2, ,j M  , then the PGF ( )G z of portfolio 

is briefly 

(2)                    
1 1

( ) exp 1j

N M
k

k j
k j

G z p z
 

  
   

   
  . 

3.3. A case of correlated business lines 

In general, the events in each business line may correlate with each other. The correlation 
between business lines is explained by the correlation between the parameters 

, 1, 2, ,k k N   of the frequency distribution: 
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( , ), 1, 2, , , 1, 2, ,ij i jC Corr i N j N     . 

We assume that this correlation matrix ( )ijC C  is positive definite. 

The correlation matrix ( )ijC C  is decomposed into lower triangular matrix ( )ijL L  

and its transpose matrix by Cholesky decomposition TC LL , and there exist random 
variables , 1, 2, ,kY k N   independent of each other such that  

1 1

2 2

N N

Y

Y
L

Y






   
   
   
   
   
   

 
. 

Also, let ( ), ( )k k k kE      be the expectation and standard deviation of k , and let 
1 ( )ijL D   be the inverse matrix of ( )ijL L , then  

2

1 , 1

( ) , ( )
N N

k ki i k ki kj i j ij
i i j

E Y D Y D D C   
 

   . 

Let  
1

( ) 1j

M
k

k j
j

f z p z



   and 
2 2

2

{ ( )} ( )
,

( ) ( )
k k

k k
k k

E Y Y

Y E Y

 


  . 

If the random variable kY  is gamma-distributed with parameters ,k k   and its 

probability density function is ,k k
g  , then the PGF ( )G z  of portfolio is calculated by  

1 1

1

, 1 , 1
1 10 0

,
11 0

( ) exp ( )

exp ( ) ( ) ( )

exp ( ) ( ) .

N N

l l

N

k k
k

N N

kl l k N N
k l

N N

l kl k l l
kl

G z E f z

L Y f z g Y g Y dY dY

Y L f z g Y dY

   

 




 

 





  
   

  
  

   
  

 
  

 



  



    

The since 1
,

1
( )

( )

y

g y e y
   





 and 1

0

1
(1 )

( )

y
xye e y dy x 

 
 

 
  

 , then 

the PGF of portfolio is 

(3)     
1 1 11

( ) 1 ( ) exp ln 1 ( )
lN N N N

l kl k l l kl k
k l kl

G z L f z L f z


  


  

    
       

    
    

 

4. THE COMPUTING ALGORITHM OF LOSS DISTRIBUTION 
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The methodology to compute the loss distribution from PGF functions has been well 
developed since CreditRisk+ has been offered CSFP. The recursive algorithms by 
Panjer(1997) and Giese(2003), and the FFT method are mostly used and implemented by 
practitioners. The Panjer’s method was firstly adopted and published in CreditRisk+ by 
CSFP, but its instability is well known among credit risk managers so that we will explain 
Giese’s algorithm(2003) and the FFT method briefly in this Chapter.  

4.1. Giese’s Recursive Method 

Rewrite Equation (3) as follows.  

(4)         
1 1 1 1 1

( ) exp ln 1 i

N N M N M
k k

l l kl i l kl i
l k i k i

G z L p L p z  
    

  
     

  
      

Let B  be a pre-specified integer. Then, we can calculate the probability 

0( )p Loss BL  that loss is equal or less than 0BL . The process consists of four steps as 

follows. 
Step 1: Define  1, 2, ,l N  ,   

( ) ( )
0 { }

1 1 1 1

1 , 1 , 1,2, ,
i

N M N M
l k l k

l kl i j l kl i j
k i k i

a L p a L p j B  
   

        , 

hence　 

( ) ( ) 1
0

1 1 1 1 1

1 ( )i

N M N M B
k k l l j B

l kl i l kl i j
k i k i j

L p L p z a a z O z  

    

         . 

Thus   

(5)           ( ) ( ) 1
0

1 1

( ) exp ln ( )
N B

l l j B
l j

l j

G z a a z O z 

 

  
     

   
  , 

and the time required for this step is 2( )O N MB . 
 

Step 2: Define  1, 2, ,l N  , 
1

( ) ( ) ( ) ( ) ( ) ( )
0 0 ( )

10

1 1
ln , , 1, 2, ,

j
l l l l l l

j j k j kl
k

b a b a kb a j B
a j






 
     

 
  , 

hence 

( ) ( ) ( ) 1
0

1 0

ln ( )
B B

l l j l j B
j j

j j

a a z b z O z 

 

 
    

 
  . 

Thus 

 (6)                     ( ) 1

1 0

( ) exp ( )
N B

l j B
l j

l j

G z b z O z 

 

 
  

 
   
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and the time required for this step is 2( )O NB .   

Step 3: Define   1, 2, ,l N  , 

( ) ( )
0 0

1 1

, , 1, 2, ,
N N

l l
l j l j

l l

c b c b j B 
 

     , 

hence　 

( ) 1

1 0 0

( )
N B B

l j j B
l j j

l j j

b z c z O z 

  

    . 

Thus 

 (7)                        1

0

( ) exp ( )
B

j B
j

j

G z c z O z 



 
  

 
    

and the time required for this step is ( )O NB . 
Step 4: Define  

0
1

exp( ), , 1, 2, ,
j

j j i j i
i

i
d c d c d j B

j 


    . 

Hence　 

1

0 0

exp ( )
B B

j j B
j j

j j

c z d z O z 

 

 
  

 
  . 

Thus 

(8)                        1

0

( ) ( )
B

j B
j

j

G z d z O z 



   

and the time required for this step is 2( )O B .   

Therefore, for 0,1,2, ,j B   the probability that loss equals 0jL  is jd , i.e.  

0( ) jp Loss jL d  . 

4.2. Fast Fourier Transform Method 

Using equation (3), the characteristic function of portfolio is  

1 1

( ) ( ) exp ln 1 ( )
N N

iz iz
l l kl k

l k

z G e L f e 
 

  
      

  
  . 

Choose a number 2nB   for some integer n . Let k  be the maximum loss of k –th 

business line and let 
( / 2) , , 0,1, 2, , 1j jz j B z x j x j B       　, 

where  

1

2
,

1

N
k

k

x z
B B x





   

  . 

Then by Fourier inversion theorem the probability ( )jp loss x  is 
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1
2 /

0

1
( ) ( )

B
jk B

j k
k
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The loss probability is obtained by the FFT algorithm and time required for this algorithm 
is 2( log )O B B . For more information see Reiβ(2004). Compared with the recursive method, 

this algorithm is very simple and fast. 
 

 

5. DATA AND COMPUTATION RESULTS 

The sample data set is a causality insurance one provided by Korea Insurance 
Development Institute, which consists of monthly time series data for the time period between 
2000, April and 2003, April collected according to insurance products. For fixed unit 

0 2048L X we rounded severities and frequencies data to display in Table 1 and 2 respectively. 

In Table 2 we calculated the correlation matrix between each business line using monthly 
frequency time series data for the same time period. The “(Loss, Prob.) = (14, 0.00009)” in 
the first two columns of Table 1 means that the probability of loss event occurring by amount 
of 14X 0 2048L X is 0.00009. The second column in Table 2 means that the loss event of Fire 

business line occurs 3710 times in monthly average, and its standard deviation is 2338, and 
that its correlations between each other business lines are 0.9212, 0.9142 and 0.8520. Figure 1 
represents the loss distribution estimated from the data in Table 1 and 2 using equation (3). 

 
 

Table 1. Severity Data 
 

Fire  Marine  Liability Comprehensive 
Loss  Prob. Loss  Prob. Loss Prob. Loss  Prob. 
14 0.00009 8 0.00013 2 0.00055 2 0.00216 
17 0.00013 9 0.00016 3 0.00401 3 0.00323 
23 0.00117 10 0.00041 4 0.07564 4 0.01866 
24 0.00198 11 0.00005 5 0.02706 5 0.02570 
25 0.00072 12 0.00069   6 0.07943 
26 0.00198 13 0.00058   7 0.06626 
27 0.00189 14 0.00067   8 0.02789 
28 0.00117 15 0.00119   9 0.00401 
29 0.00072 16 0.00192   11 0.00265 
30 0.00037 17 0.00028     
31 0.00118 23 0.00003     
32 0.00004       
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Table 2. Frequency Data 
 
 

 Fire Marine Liability Comp. 
Average 3710 6226 13890 19283 
St. Dev. 2338 3654 8230 11837 

Corr. 

Fire 1.0000 0.9212 0.9142 0.8520 
Marine 0.9212 1.0000 0.9775 0.9795 

Liability 0.9142 0.9775 1.0000 0.9774 
Comp. 0.8520 0.9795 0.9774 1.0000 

 
 

Figure 1. Loss Distribution 

 
It takes much time to calculate the loss distribution by the recursive method of Giese 

(2003) because we should do it by 172B  . On the contrary, the FFT method demands 

2( log )O B B  in computation time so we adopt the FFT method. We also used the recursive 

method of Panjer (1997, CSFP) to estimate the loss distribution but had the very unstable 
results. The loss level i  in Figure 1 is an approximation to the actual exposed loss i , i.e., 

 02048i i L   . 

In other words it is different from the loss level i  defined in Chapter 3 by 2048. 

And we see that  
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 37.22qVaR   when q=99%, 

and  
                         48.38qVaR   when q=99.9%. 

We note that the loss distribution has shape similar to a typical credit loss distribution with 
long-tailed implying the loss event being rare one. 

 6. CONCLUSION 

In this paper we offered an efficient algorithm for causality insurance company to measure 
an insurance risk using CreditRisk+ methodology. In particular we proposed a mathematical 
method to get the loss distribution in case of correlated business lines, explained an algorithm 
to implement it effectively, and estimated the loss distribution and the VaR with real data. 

We could compute the CreditVaR to get speedy and robust results. It is because we 
adopted an analytic approximation to generate the probability generating function. Even 
though it is a nonparametric method its input data type is so simple. For example, we 
estimated correlations among severities of business lines with serial data and put them in the 
model directly. In other words, the model allows the simplest manner of estimating 
correlations. The CreditRisk+ assumes independent sectors which is too strong for 
practitioners to accommodate for practical applications such as capital allocation and RAPM. 
Our model avoids the assumptions of independence among business lines. As we see in 
Figure 1 we know that the aggregated loss distribution estimated with our algorithm displays 
a typical shape of a loss distribution. 

The insurance company can get the aggregated VaR in terms of credit risks and insurance 
risks with our method, which enables the risk manager to use the VaR as the firm-wide total 
risk. 

Our future research direction will be to find a way to apply the estimated loss distribution 
to DFA, and to get the actual aggregated loss distribution of the portfolio containing loans and 
bonds with credit risks and insurance products with insurance risks.  
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