DOI QR코드

DOI QR Code

비육기간이 홀스타인육 패티의 산화안정성에 미치는 영향

Effect of Fattening Period on the Oxidative Stability of Holstein Beef Patties

  • 김종인 (농촌진흥청 국립축산과학원) ;
  • 강선문 (농촌진흥청 국립축산과학원) ;
  • 강근호 (농촌진흥청 국립축산과학원) ;
  • 성필남 (농촌진흥청 국립축산과학원) ;
  • 정석근 (농촌진흥청 국립축산과학원) ;
  • 박범영 (농촌진흥청 국립축산과학원) ;
  • 김천제 (건국대학교 축산식품생물공학과) ;
  • 조수현 (농촌진흥청 국립축산과학원)
  • Kim, Jong-In (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kang, Sun-Moon (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kang, Geun-Ho (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Seong, Pil-Nam (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Jung, Seok-Geun (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Park, Beom-Young (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Cheon-Jei (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Cho, Soo-Hyun (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration)
  • 투고 : 2012.03.22
  • 심사 : 2012.07.06
  • 발행 : 2012.08.31

초록

본 연구는 비육기간이 홀스타인육 패티의 산화안정성에 미치는 영향에 관해 구명하고자 실시하였다. 18, 21 및 24개월령 홀스타인 거세우 등심(M. longissimus dorsi) 패티를 $4^{\circ}C$에서 12일간 저장하면서 지방산화, 단백질산화, 육색소산화 및 육색을 분석하였다. 일반성분 중 지방 함량은 24개월령이 18개월령보다 높았다(p<0.05). 저장 중 TBARS 함량과 metmyoglobin 농도는 8일째부터 24개월령이 높았다(p<0.05). Conjugated dienes 함량은 저장 4일째부터 21과 24개월령이 높았으며(p<0.05), carbonyl 함량은 12일째에 24개월령이 높았다(p<0.05). 표면육색 중 명도($L^*$)는 저장 4일째부터 21과 24개월령이 낮은 경향을 보였다. 적색도($a^*$)는 24개월령이 저장기간 동안 가장 빨리 감소하였으나 (p<0.05), 황색도($b^*$)는 가장 높은 값을 유지하였다. 따라서 비육기간이 높을수록 홀스타인육 패티의 지방산화, 단백질산화, 육색소 산화가 촉진되었다. 특히 24개월령의 산화안정성이 가장 낮았다.

The objective of this research was to investigate the effect of the fattening period (18, 21, and 24 mon) on the oxidative stability of Holstein beef patties. The ground Holstein steer beef samples (M. longissimus dorsi) were stored at $4^{\circ}C$ for 12 d and used for lipid oxidation, protein oxidation, myoglobin oxidation, and color measurements. Fat content was significantly (p<0.05) higher in the 24 mon group than in the 18 mon group. 2-thiobarbituric acid reactive substances content and metmyoglobin concentration were the highest (p<0.05) in the 24 mon group from 8 d of storage. Conjugated dienes content was significantly (p<0.05) higher in the 21 and 24 mon groups. Carbonyl content was the highest (p<0.05) in the 24 mon group at 12 d of storage. In surface meat color, the CIE $L^*$ value showed a lower level in the 21 and 24 mon groups from 4 d of storage. Although the CIE $a^*$ value was further lowered, the CIE $b^*$ value maintained a higher value in the 24 mon group during storage, compared to the other groups. Therefore, greater fattening period increased lipid oxidation, protein oxidation, and myoglobin oxidation in Holstein beef patties. Partially, the 24 mon group had the lowest oxidative stability.

키워드

참고문헌

  1. Anderson, S., Aldana, S., Beggs, M., Birkey, J., Conquest, A., Conway, R., Hemminger, T., Herrick, J., Hurley, C., Ionita, C., Longbind, J., McMaignal, S., Milu, A., Mitchell, T., Nanke, K., Perez, A., Phelps, M., Reitz, J., Salazar, A., Shinkle, T., Strampe, M., Van Horn, K., Williams, J., Wipperfurth, C., Zelten, S., and Zerr, S. (2007) Determination of fat, moisture, and protein in meat and meat products by using the FOSS $FoodScan^{TM}$ near-infrared spectrophotometer with FOSS artificial neural network calibration model and associated database: collaborative study. J. AOAC Int. 90, 1073-1082.
  2. APGS (Animal Products Grading Service) (2011) Information and data of agricultural statistics of Korea. Available from: http://www.ekape.or.kr/view/u-ser/distribution/distribution_01_01.asp. Assessed Oct. 22, 2011.
  3. Berlett, B. S. and Stadtman, E. R. (1997) Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313-20316. https://doi.org/10.1074/jbc.272.33.20313
  4. Buckley, D. J., Morrisey, P. A., and Gray, J. I. (1995) Influence of dietary vitamin E on the oxidative stability and quality of pig meat. J. Anim. Sci. 73, 3122-3130.
  5. Choe, J. H., Jang, A., Lee, E. S., Choi, J. H., Choi, Y. S., Han, D. J., Kim, H, Y., Lee, M, A., Shim, S, Y., and Kim, C. J. (2011) Oxidative and color stability of cooked ground pork containing lotus leaf (Nelumbo nucifera) and barley leaf (Hordeum vulgare) powder during refrigerated storage. Meat Sci. 87, 12-18. https://doi.org/10.1016/j.meatsci.2010.08.011
  6. CIE (1986) Colorimetry. 2nd ed., Commision Internationale de Leclairage I^{\circ}$OEclairage, Publication CIE No. 15:2. Vienna, Austria.
  7. Corazzin, M., Bovolenta, S., Sepulcri, A., and Piasentier, E. (2012) Effect of whole linseed addition on meat production and quality of Italian Simmental and Holstein young bulls. Meat Sci. 90, 99-105. https://doi.org/10.1016/j.meatsci.2011.06.008
  8. Davies, M. J. and Dean, R. T. (2003) Radical-mediated protein oxidation. Oxford Science University, London, England, p. 215.
  9. Decker, E. A., Chan, W. K. M., Livisay, S. A., Butterfield, D. A., and Faustman, C. (1995) Interactions between carnosine and the different redox states of myoglobin. J. Food Sci. 60, 1201-1204. https://doi.org/10.1111/j.1365-2621.1995.tb04555.x
  10. Descalzo, A. M., Rossetti, L., Grigioni, G., Irurueta, M., Sancho, A. M., Carrete, J., and Pensel, N. A. (2007) Antioxidant status and odour profile in fresh beef from pasture of grainfed cattle. Meat Sci. 75, 299-307. https://doi.org/10.1016/j.meatsci.2006.07.015
  11. Faustman, C. and Cassens, R. G. (1990) The biochemical basis for discoloration in fresh meat: A review. J. Muscle Foods 1, 217-243. https://doi.org/10.1111/j.1745-4573.1990.tb00366.x
  12. Folch, J. M., Lees, M., and Stanley, G. H. S. (1957) A simple method for the isolation and purification and total lipids from animal tissues. J. Biol. Chem. 226, 497-509.
  13. Hoehne, A., Nuernberg, G., Kuehn, C., and Nuernberg, K. (2012) Relationships between intramuscular fat content, selected carcass traits, and fatty acid profile in bulls using a $F_2$-population. Meat Sci. 90, 629-635. https://doi.org/10.1016/j.meatsci.2011.10.005
  14. Greene, B. E., Hsin, I., and Zipser, M. W. (1971) Retardation of oxidative color changes in raw ground beef. J. Food Sci. 36, 940-942. https://doi.org/10.1111/j.1365-2621.1971.tb15564.x
  15. Johnston, J. E., Sepe, H. A., Miano, C. L., Brannan, R. G., and Alderton, A. L. (2005) Honey inhibits lipid oxidation on ready-to-eat ground beef patties. Meat Sci. 70, 627-631. https://doi.org/10.1016/j.meatsci.2005.02.011
  16. Jurie, C., Picard, B., Hocquette, J. F., Dransfield, E., Micol, D., and Listrat, A. (2007) Muscle and meat quality characteristics of Holstein and Salers cull cows. Meat Sci. 77, 459-466. https://doi.org/10.1016/j.meatsci.2007.04.014
  17. Kang, S. W., Ki, K. S., Oh, Y. K., Kim, K. H., and Choi, C. W. (2005) Effects of roughage feeding type during the growing and early-fattening periods on growth performance, feed efficiency and carcass characteristics on Holstein steers. Korean J. Anim. Sci. Technol. 47, 769-782. https://doi.org/10.5187/JAST.2005.47.5.769
  18. m, D. G. Jung, K. K., Sung, S. K., Choi, C. B., Kim, S. K., Kim, D, Y., and Choi, B. J. (1996) Effects of Age on the Carcass Characteristics of Hanwoo and Holstein steers. Korean. J. Anim. Sci. 38, 268-274.Kim, D. G. Jung, K. K., Sung, S. K., Choi, C. B., Kim, S. K., Kim, D, Y., and Choi, B. J. (1996) Effects of Age on the Carcass Characteristics of Hanwoo and Holstein steers. Korean. J. Anim. Sci. 38, 268-274.
  19. Kim, S. I., Jung, K. K., Kim, J. Y., Lee, S, W., Beak, K. H., and Choi, C. B. (2007) Effect of feeding high quality hay on performance and physic-chemical characteristics of carcass of Hanwoo steers. Korean J. Anim. Sci. Technol. 49, 783-800. https://doi.org/10.5187/JAST.2007.49.6.783
  20. Korea Dairy and Beef Farmers Association (KDBFA) (2009) Guidelines of rearing of beef cattle for high-quality beef. Animal Products Research and Development Division, National Institute of Animal Science, p. 72.
  21. Krzywicki, K. (1982) The determination of haem pigments in meat. Meat Sci. 7, 29-36. https://doi.org/10.1016/0309-1740(82)90095-X
  22. Kulas, E. and Ackman, R. G. (2001) Different tocopherols and the relationship between two methods for determination of primary oxidation products in fish oil. J. Agric. Food Chem. 49, 1724-1729. https://doi.org/10.1021/jf0011541
  23. Lee, S. K., Panjono, Kang, S. M., Jung, Y. B., Kim, T. S., Lee, I. S., Song, Y. H., and Kang, C. G. (2008) Effects of tethering and loose housing on the meat quality of Hanwoo bulls. Asian. Aust. J. Anim. Sci. 21, 1807-1814. https://doi.org/10.5713/ajas.2008.80144
  24. Lund, M. N., Hviid, M. S., and Skibsted, L. H. (2007) The combined effect of antioxidants and modified atmosphere packaging on protein and lipid oxidation on beef patties duringchill storage. Meat Sci. 76, 226-233. https://doi.org/10.1016/j.meatsci.2006.11.003
  25. Marti, S., Realini, C. E., Bach, A., Përez-Juan, M., and Devant, M. (2011) Effect of vitamin A restriction on performance and meat quality in finishing Holstein bulls and steers. Meat Sci. 89, 412-418. https://doi.org/10.1016/j.meatsci.2011.05.003
  26. MIFAFF (2007) Processing standard for meat products Act 2008-82 Grading. Ministry for Food, Agriculture, Forest and Fisheries, Korea.
  27. Morzel, M., Gatellier, Ph., Sayd, T., Renerre, M., and Laville, E. (2006) Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins. Meat Sci. 73, 536-543. https://doi.org/10.1016/j.meatsci.2006.02.005
  28. Oliver, C. N., Ahn, B. W., Moerman, E. J., Goldstein, S., and Stadtman, E. R. (1987) Age related changes in oxidized proteins. J. Biol. Chem. 262, 5488-5491.
  29. Requena, J. R., Levine, R. L., and Stadtman, E. R. (2003) Recent advances in the analysis of oxidized proteins. Amino Acids 25, 221-226. https://doi.org/10.1007/s00726-003-0012-1
  30. SAS (2001) SAS/STAT Software for PC. Release 9.2, SAS Institute Inc., Cary, NC, USA.
  31. Shackelford, S. D., Wheeler, T. L., Meade, M. K., Reagan, J. O., Byrnes, B. L., and Koohmaraie, M. (2001). Consumer impressions of Tender Select beef. J. Anim. Sci. 79, 2605-2614.
  32. Sinnhuber, R. O. and Yu, T. C. (1977) The 2-thiobarbituric acid reaction, an objective measure of the oxidative deterioration occurring in fats and oils. J. Jap. Soc. Fish. Sci. 26, 259-267.
  33. Srinivasan, S. and Xiong, Y. L. (1996) Gelation of beef heart surimi as affected by antioxidants. J. Food Sci. 61, 707-711. https://doi.org/10.1111/j.1365-2621.1996.tb12186.x
  34. Stadtman, E. R. (1990) Metal ion-catalysed oxidation of proteins: biochemical mechanism and biological consequences. Free Rad. Bio. Med. 8, 315-325.
  35. Xiong, Y. L. (2000) Protein oxidation and implications for muscle food quality. In: Antioxidants on muscle foods. Decker, E., Faustman, C., and Lopez-Bote, C. (eds), John Wiley and Sons, Inc., NY, USA, pp. 85-111.
  36. Xiong, Y. L., Mullins, O. E., Stika, J. F., Chen, J., Blanchard, S. P., and Moody, W. G. (2007) Tenderness and oxidative stability of post-mortem muscles from mature cows of various ages. Meat Sci. 77, 105-113. https://doi.org/10.1016/j.meatsci.2007.04.012