DOI QR코드

DOI QR Code

Functional roles of Tryptophan residues in diketoreductase from Acinetobacter baylyi

  • Huang, Yan (State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University) ;
  • Lu, Zhuo (State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University) ;
  • Ma, Min (State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University) ;
  • Liu, Nan (State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University) ;
  • Chen, Yijun (State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University)
  • Received : 2012.03.19
  • Accepted : 2012.05.03
  • Published : 2012.08.31

Abstract

Diketoreductase (DKR) from Acinetobacter baylyi contains two tryptophan residues at positions 149 and 222. Trp-149 and Trp-222 are located along the entry path of substrate into active site and at the dimer interface of DKR, respectively. Single and double substitutions of these positions were generated to probe the roles of tryptophan residues. After replacing Trp with Ala and Phe, biochemical and biophysical characteristics of the mutants were thoroughly investigated. Enzyme activity and substrate binding affinity of W149A and W149F were remarkably decreased, suggesting that Trp-149 regulates the position of substrate at the binding site. Meanwhile, enzyme activity of W222F was increased by 1.7-fold while W222A was completely inactive. In addition to lower thermostability of Trp-222 mutants, molecular modeling of the mutants revealed that Trp-222 is vital to protein folding and dimerization of the enzyme.

Keywords

References

  1. Wu, X. R., Liu, N., He, Y. M. and Chen, Y. J. (2009) Cloning, expression, and characterization of a novel diketoreductase from Acinetobacter baylyi. Acta. Biochim. Biophys. Sin. (Shanghai) 41, 163-170. https://doi.org/10.1093/abbs/gmn019
  2. Wu, X. R., Liu, N., He, Y. M. and Chen, Y. J. (2008) A bacterial enzyme catalyzing double reduction of a ${\beta},\;{\delta}$-diketo ester with unprecedented stereoselectivity. Nature Precedings, http://hdl.handle.net/10101/npre.12008.11697.10101.
  3. Wu, X. R., Jiang, J. P. and Chen, Y. J. (2011) Correlation between intracellular cofactor concentrations and biocatalytic efficiency: co-expression of diketoreductase and glucose dehydrogenase for the preparation of chiral diol for statin drugs. ACS Catal. 1, 1661-1664. https://doi.org/10.1021/cs200408y
  4. Wu, X., Wang, L., Wang, S. and Chen, Y. (2010) Stereoselective introduction of two chiral centers by a single diketoreductase: an efficient biocatalytic route for the synthesis of statin side chains. Amino. Acids. 39, 305-308. https://doi.org/10.1007/s00726-009-0390-0
  5. Wu, X., Chen, C., Liu, N. and Chen, Y. (2011) Preparation of ethyl 3R,5S-6-(benzyloxy)-3,5-dihydroxy-hexanoate by recombinant diketoreductase in a biphasic system. Bioresour. Technol. 102, 3649-3652. https://doi.org/10.1016/j.biortech.2010.11.104
  6. Wu, X., Chen, C., Liu, N. and Chen, Y. (2010) Two step process for diketo-reduction catalyzed by diketoreductase. J. Chin. Pharma. Uni. 41, 408-413.
  7. Huang, Y., Liu, N., Wu, X. R. and Chen, Y. J. (2010) Dehydrogenases/reductases for the synthesis of chiral pharmaceutical intermediates. Curr. Org. Chem. 14, 1447-1460. https://doi.org/10.2174/138527210791616795
  8. Lu, M. L., Cao, X., Yang, X., Zheng, H., Liu, N., Jiang, Y., Lin, D. H. and Chen, Y. J. (2010) A diketoreductase exhibits unique renaturation profile from thermal-induced protein unfolding. Amino. Acids. 39, 609-613. https://doi.org/10.1007/s00726-010-0491-9
  9. Huang, Y., Lu, Z., Liu, N. and Chen, Y. (2012) Identification of important residues in diketoreductase from Acinetobacter baylyi by molecular modeling and site-directed mutagenesis. Biochimie. 94, 471-478. https://doi.org/10.1016/j.biochi.2011.08.015
  10. Shih, C., Museth, A. K., Abrahamsson, M., Blanco- Rodriguez, A. M., Di Bilio, A. J., Sudhamsu, J., Crane, B. R., Ronayne, K. L., Towrie, M., Vlcek, A. Jr., Richards, J. H., Winkler, J. R. and Gray, H. B. (2008) Tryptophan-accelerated electron flow through proteins. Science 320, 1760-1762. https://doi.org/10.1126/science.1158241
  11. Lustig, D. B., Kempt, C., Alam, S., Clancy, J., Yee, J. and Rafferty, S. P. (2011) Mutation of conserved tryptophan residues at the dimer interface of Staphylococcus aureus nitric oxide synthase. Arch. Biochem. Biophys. 506, 165-172. https://doi.org/10.1016/j.abb.2010.11.024
  12. Lee, L. C., Chou, Y. L., Chen, H. H., Lee, Y. L. and Shaw, J. F. (2009) Functional role of a non-active site residue Trp(23) on the enzyme activity of Escherichia coli thioesterase I/protease I/lysophospholipase L(1). Biochim. Biophys. Acta. 1794, 1467-1473. https://doi.org/10.1016/j.bbapap.2009.06.008
  13. Hu, H. Y., Wu, M. C., Fang, H. J., Forrest, M. D., Hu, C. K., Tsong, T. Y. and Chen, H. M. (2010) The role of tryptophan in staphylococcal nuclease stability. Biophys. Chem. 151, 170-177. https://doi.org/10.1016/j.bpc.2010.07.001
  14. Allocati, N., Masulli, M., Pietracupa, M., Favaloro, B., Federici, L. and Di Ilio, C. (2005) Contribution of the two conserved tryptophan residues to the catalytic and structural properties of Proteus mirabilis glutathione S-transferase B1-1. Biochem. J. 385, 37-43. https://doi.org/10.1042/BJ20040890
  15. Bourbon-Freie, A., Dub, R. E., Xiao, X. and Lowe, M. E. (2009) Trp-107 and trp-253 account for the increased steady state fluorescence that accompanies the conformational change in human pancreatic triglyceride lipase induced by tetrahydrolipstatin and bile salt. J. Biol. Chem. 284, 14157-14164. https://doi.org/10.1074/jbc.M901154200
  16. Pace, C. N. (1995) Evaluating contribution of hydrogen bonding and hydrophobic bonding to protein folding. Methods Enzymol. 259, 538-554. https://doi.org/10.1016/0076-6879(95)59060-9
  17. Lanzarotti, E., Biekofsky, R. R., Estrin, D. A., Marti, M. A. and Turjanski, A. G. (2011) Aromatic-aromatic interactions in proteins: beyond the dimer. J. Chem. Inf. Model. 51, 1623-1633. https://doi.org/10.1021/ci200062e
  18. Burley, S. K. and Petsko, G. A. (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23-28. https://doi.org/10.1126/science.3892686
  19. Balchin, D., Fanucchi, S., Achilonu, I., Adamson, R. J., Burke, J., Fernandes, M., Gildenhuys, S. and Dirr, H. W. (2010) Stability of the domain interface contributes towards the catalytic function at the H-site of class alpha glutathione transferase A1-1. Biochim. Biophys. Acta. 1804, 2228-2233. https://doi.org/10.1016/j.bbapap.2010.09.003
  20. Wu, X. R., Wang, Y. C., Ju, J. M., Chen, C., Liu, N. and Chen, Y. J. (2009) Enantioselective synthesis of ethyl (S)-2-hydroxy-4-phenylbutyrate by recombinant diketoreductase. Tetrahedron: Asymmetry 20, 2504-2509. https://doi.org/10.1016/j.tetasy.2009.10.036
  21. Lee, J., Lee, K. and Shin, S. (2000) Theoretical studies of the response of a protein structure to cavity-creating mutations. Biophys. J. 78, 1665-1671. https://doi.org/10.1016/S0006-3495(00)76718-X
  22. Hong, H., Park, S., Jimenez, R. H., Rinehart, D. and Tamm, L. K. (2007) Role of aromatic side chains in the folding and thermodynamic stability of integral membrane proteins. J. Am. Chem. Soc. 129, 8320-8327. https://doi.org/10.1021/ja068849o
  23. Espinoza-Fonseca, L. M., Wong-Ramirez, C. and Trujillo- Ferrara, J. G. (2010) Tyr74 is essential for the formation, stability and function of Plasmodium falciparum triosephosphate isomerase dimer. Arch. Biochem. Biophys. 494, 46-57. https://doi.org/10.1016/j.abb.2009.11.009
  24. Eriksson, A. E., Baase, W. A., Zhang, X. J., Heinz, D. W., Blaber, M., Baldwin, E. P. and Matthews, B. W. (1992) Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255, 178-183. https://doi.org/10.1126/science.1553543
  25. Myers, D. P., Jackson, L. K., Ipe, V. G., Murphy, G. E. and Phillips, M. A. (2001) Long-range interactions in the dimer interface of ornithine decarboxylase are important for enzyme function. Biochemistry 40, 13230-13236. https://doi.org/10.1021/bi0155908
  26. Groemping, Y. and Hellmann, N. (2005) Spectroscopic methods for the determination of protein interactions; in Current protocols in protein science, Coligan, J. E., Dunn, B. M., Ploegh, H. L., Speicher, D. W. and Wingfield, P. T. (eds.), pp. 20.8.1-20.8.27, John Wiley & Sons, Inc, New York, USA.
  27. Blatt, E., Chatelier, R. C. and Sawyer, W. H. (1986) Effects of quenching mechanism and type of quencher association on Stern-Volmer plots in compartmentalized systems. Biophys. J. 50, 349-356. https://doi.org/10.1016/S0006-3495(86)83468-3
  28. Lehrer, S. S. (1971) Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10, 3254-3263. https://doi.org/10.1021/bi00793a015

Cited by

  1. The “Gate Keeper” Role of Trp222 Determines the Enantiopreference of Diketoreductase toward 2-Chloro-1-Phenylethanone vol.9, pp.7, 2014, https://doi.org/10.1371/journal.pone.0103792