References
- Wu, X. R., Liu, N., He, Y. M. and Chen, Y. J. (2009) Cloning, expression, and characterization of a novel diketoreductase from Acinetobacter baylyi. Acta. Biochim. Biophys. Sin. (Shanghai) 41, 163-170. https://doi.org/10.1093/abbs/gmn019
-
Wu, X. R., Liu, N., He, Y. M. and Chen, Y. J. (2008) A bacterial enzyme catalyzing double reduction of a
${\beta},\;{\delta}$ -diketo ester with unprecedented stereoselectivity. Nature Precedings, http://hdl.handle.net/10101/npre.12008.11697.10101. - Wu, X. R., Jiang, J. P. and Chen, Y. J. (2011) Correlation between intracellular cofactor concentrations and biocatalytic efficiency: co-expression of diketoreductase and glucose dehydrogenase for the preparation of chiral diol for statin drugs. ACS Catal. 1, 1661-1664. https://doi.org/10.1021/cs200408y
- Wu, X., Wang, L., Wang, S. and Chen, Y. (2010) Stereoselective introduction of two chiral centers by a single diketoreductase: an efficient biocatalytic route for the synthesis of statin side chains. Amino. Acids. 39, 305-308. https://doi.org/10.1007/s00726-009-0390-0
- Wu, X., Chen, C., Liu, N. and Chen, Y. (2011) Preparation of ethyl 3R,5S-6-(benzyloxy)-3,5-dihydroxy-hexanoate by recombinant diketoreductase in a biphasic system. Bioresour. Technol. 102, 3649-3652. https://doi.org/10.1016/j.biortech.2010.11.104
- Wu, X., Chen, C., Liu, N. and Chen, Y. (2010) Two step process for diketo-reduction catalyzed by diketoreductase. J. Chin. Pharma. Uni. 41, 408-413.
- Huang, Y., Liu, N., Wu, X. R. and Chen, Y. J. (2010) Dehydrogenases/reductases for the synthesis of chiral pharmaceutical intermediates. Curr. Org. Chem. 14, 1447-1460. https://doi.org/10.2174/138527210791616795
- Lu, M. L., Cao, X., Yang, X., Zheng, H., Liu, N., Jiang, Y., Lin, D. H. and Chen, Y. J. (2010) A diketoreductase exhibits unique renaturation profile from thermal-induced protein unfolding. Amino. Acids. 39, 609-613. https://doi.org/10.1007/s00726-010-0491-9
- Huang, Y., Lu, Z., Liu, N. and Chen, Y. (2012) Identification of important residues in diketoreductase from Acinetobacter baylyi by molecular modeling and site-directed mutagenesis. Biochimie. 94, 471-478. https://doi.org/10.1016/j.biochi.2011.08.015
- Shih, C., Museth, A. K., Abrahamsson, M., Blanco- Rodriguez, A. M., Di Bilio, A. J., Sudhamsu, J., Crane, B. R., Ronayne, K. L., Towrie, M., Vlcek, A. Jr., Richards, J. H., Winkler, J. R. and Gray, H. B. (2008) Tryptophan-accelerated electron flow through proteins. Science 320, 1760-1762. https://doi.org/10.1126/science.1158241
- Lustig, D. B., Kempt, C., Alam, S., Clancy, J., Yee, J. and Rafferty, S. P. (2011) Mutation of conserved tryptophan residues at the dimer interface of Staphylococcus aureus nitric oxide synthase. Arch. Biochem. Biophys. 506, 165-172. https://doi.org/10.1016/j.abb.2010.11.024
- Lee, L. C., Chou, Y. L., Chen, H. H., Lee, Y. L. and Shaw, J. F. (2009) Functional role of a non-active site residue Trp(23) on the enzyme activity of Escherichia coli thioesterase I/protease I/lysophospholipase L(1). Biochim. Biophys. Acta. 1794, 1467-1473. https://doi.org/10.1016/j.bbapap.2009.06.008
- Hu, H. Y., Wu, M. C., Fang, H. J., Forrest, M. D., Hu, C. K., Tsong, T. Y. and Chen, H. M. (2010) The role of tryptophan in staphylococcal nuclease stability. Biophys. Chem. 151, 170-177. https://doi.org/10.1016/j.bpc.2010.07.001
- Allocati, N., Masulli, M., Pietracupa, M., Favaloro, B., Federici, L. and Di Ilio, C. (2005) Contribution of the two conserved tryptophan residues to the catalytic and structural properties of Proteus mirabilis glutathione S-transferase B1-1. Biochem. J. 385, 37-43. https://doi.org/10.1042/BJ20040890
- Bourbon-Freie, A., Dub, R. E., Xiao, X. and Lowe, M. E. (2009) Trp-107 and trp-253 account for the increased steady state fluorescence that accompanies the conformational change in human pancreatic triglyceride lipase induced by tetrahydrolipstatin and bile salt. J. Biol. Chem. 284, 14157-14164. https://doi.org/10.1074/jbc.M901154200
- Pace, C. N. (1995) Evaluating contribution of hydrogen bonding and hydrophobic bonding to protein folding. Methods Enzymol. 259, 538-554. https://doi.org/10.1016/0076-6879(95)59060-9
- Lanzarotti, E., Biekofsky, R. R., Estrin, D. A., Marti, M. A. and Turjanski, A. G. (2011) Aromatic-aromatic interactions in proteins: beyond the dimer. J. Chem. Inf. Model. 51, 1623-1633. https://doi.org/10.1021/ci200062e
- Burley, S. K. and Petsko, G. A. (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23-28. https://doi.org/10.1126/science.3892686
- Balchin, D., Fanucchi, S., Achilonu, I., Adamson, R. J., Burke, J., Fernandes, M., Gildenhuys, S. and Dirr, H. W. (2010) Stability of the domain interface contributes towards the catalytic function at the H-site of class alpha glutathione transferase A1-1. Biochim. Biophys. Acta. 1804, 2228-2233. https://doi.org/10.1016/j.bbapap.2010.09.003
- Wu, X. R., Wang, Y. C., Ju, J. M., Chen, C., Liu, N. and Chen, Y. J. (2009) Enantioselective synthesis of ethyl (S)-2-hydroxy-4-phenylbutyrate by recombinant diketoreductase. Tetrahedron: Asymmetry 20, 2504-2509. https://doi.org/10.1016/j.tetasy.2009.10.036
- Lee, J., Lee, K. and Shin, S. (2000) Theoretical studies of the response of a protein structure to cavity-creating mutations. Biophys. J. 78, 1665-1671. https://doi.org/10.1016/S0006-3495(00)76718-X
- Hong, H., Park, S., Jimenez, R. H., Rinehart, D. and Tamm, L. K. (2007) Role of aromatic side chains in the folding and thermodynamic stability of integral membrane proteins. J. Am. Chem. Soc. 129, 8320-8327. https://doi.org/10.1021/ja068849o
- Espinoza-Fonseca, L. M., Wong-Ramirez, C. and Trujillo- Ferrara, J. G. (2010) Tyr74 is essential for the formation, stability and function of Plasmodium falciparum triosephosphate isomerase dimer. Arch. Biochem. Biophys. 494, 46-57. https://doi.org/10.1016/j.abb.2009.11.009
- Eriksson, A. E., Baase, W. A., Zhang, X. J., Heinz, D. W., Blaber, M., Baldwin, E. P. and Matthews, B. W. (1992) Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255, 178-183. https://doi.org/10.1126/science.1553543
- Myers, D. P., Jackson, L. K., Ipe, V. G., Murphy, G. E. and Phillips, M. A. (2001) Long-range interactions in the dimer interface of ornithine decarboxylase are important for enzyme function. Biochemistry 40, 13230-13236. https://doi.org/10.1021/bi0155908
- Groemping, Y. and Hellmann, N. (2005) Spectroscopic methods for the determination of protein interactions; in Current protocols in protein science, Coligan, J. E., Dunn, B. M., Ploegh, H. L., Speicher, D. W. and Wingfield, P. T. (eds.), pp. 20.8.1-20.8.27, John Wiley & Sons, Inc, New York, USA.
- Blatt, E., Chatelier, R. C. and Sawyer, W. H. (1986) Effects of quenching mechanism and type of quencher association on Stern-Volmer plots in compartmentalized systems. Biophys. J. 50, 349-356. https://doi.org/10.1016/S0006-3495(86)83468-3
- Lehrer, S. S. (1971) Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10, 3254-3263. https://doi.org/10.1021/bi00793a015
Cited by
- The “Gate Keeper” Role of Trp222 Determines the Enantiopreference of Diketoreductase toward 2-Chloro-1-Phenylethanone vol.9, pp.7, 2014, https://doi.org/10.1371/journal.pone.0103792