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ON THE k-REGULAR SEQUENCES AND THE

GENERALIZATION OF F -MODULES

Khadijeh Ahmadi-Amoli and Navid Sanaei

Abstract. For a given ideal I of a Noetherian ring R and an arbitrary
integer k ≥ −1, we apply the concept of k-regular sequences and the no-
tion of k-depth to give some results on modules called k-Cohen Macaulay

modules, which in local case, is exactly the k-modules (as a generalization
of f-modules). Meanwhile, we give an expression of local cohomology with
respect to any k-regular sequence in I, in a particular case. We prove that

the dimension of homology modules of the Koszul complex with respect
to any k-regular sequence is at most k. Therefore homology modules of
the Koszul complex with respect to any filter regular sequence has finite
length.

1. Introduction

Throughout this paper, R denotes a commutative Noetherian ring with non-
zero identity, I denotes an arbitrary ideal, M denotes a finitely generated R-
module, and k ≥ −1 an arbitrary integer. The notion of k-regular sequence
was introduced by Chinh and Nhan [4] which is an extension of the well-known
notion of filter regular sequence introduced by Schenzel, Trung, and Cuong
[10]. First we give some standard properties of these sequences basically, by
a different method from [4]. Most of the properties are familiar results for
the cases k = −1, k = 0, and k = 1, cf. [5], [10], [1], and [3]. In the local
case, it is shown, ([8], Lemma 3.4), that the local cohomology with respect to
the maximal ideal of R is concerned with the local cohomology with respect
to an ideal generated by any filter regular sequence. In a Noetherian ring
(not necessary local), we prove (in Theorem 3.2), that for a k-regular M -
sequence in I, say a1, . . . , an, if

(
Supp(M/(a1, . . . , an)M)∖ V (I)

)
≤k

= ∅, then
Hi

I(M) ∼= Hi
(a1,a2,...,an)

(M) for all i < n. In Section 4, we show that for

any k-regular sequence a1, . . . , an the dimension of homology modules of the
Koszul complex with respect to a1, . . . , an is at most k. In local case and
k = 0, i.e., if a1, . . . , an is a filter regular sequence it is well-known that the

Received August 21, 2011; Revised January 30, 2012.

2010 Mathematics Subject Classification. 13D45, 13C15.
Key words and phrases. k-regular M -sequences, k-depth, k-ht, local cohomology modules,

k-Cohen Macaulay modules, f-modules, k-modules, Koszul complexes.

c⃝2012 The Korean Mathematical Society

1083



1084 KHADIJEH AHMADI-AMOLI AND NAVID SANAEI

homology modules of the correspondence Koszul complex has finite length,
cf. Corollary 4.3. Filter regular sequences have been studied in [4] and [7],
and for non-local ring in [1]. Next, in Section 5, we introduce the concept
of k-modules as a generalization of f-modules introduced by P. Schenzel, N.
V. Trung, and N. T. Cuong [10]. Then we give some characterizations for
k-modules in Proposition 5.2, and as a consequence of it, we conclude that k-
Cohen Macaulay modules which is introduced in [2], are the same as k-modules
under a dimensional equation, cf. Corollary 5.3. Another application of k-depth
is shown in Theorem 5.4, which gives a necessary and sufficient condition for k-
modules in terms of prime ideals. At the end we show that if M is a k-module,
for an ideal I of R

k-depth(I,M)=k-htMI=dimM−dimR/I.

In cases k = −1 or k = 0 (i.e., when M is C.M. or f-module), this is the
well-known equality in commutative ring theory.

2. Preliminaries

In this section we remind the concept of k-regular M -sequence and their
properties. For more details, the reader is referred to [2]. For a subset T of
Spec(R) and an integer i ≥ −1, we set

(T )>i := {p ∈ T | dimR/p > i},

(T )≤i := {p ∈ T | dimR/p ≤ i}.

Definition. A sequence a1, . . . , an of elements of R is called a poor k-regular
M -sequence whenever ai /∈ p for all

p ∈ Ass(M/
i−1∑
j=1

ajM), dimR/p > k

for all i = 1, . . . , n. Moreover, if dim(M/
∑n

i=1 aiM) > k, a1, . . . , an is called
a k-regular M -sequence. An element a of R is called a k-regular M -element if
a ̸∈ p for all p ∈ Ass(M) satisfying dimR/p > k.

Remarks 2.1. (i) It is easy to see that for a given finitely generated R-module
M , an ideal I of R with

(
Supp(M/IM)

)
>k

= ∅ and any positive integer n, we
can find n elements of I which form a poor k-regular M -sequence.

(ii) Every regular (filter regular, generalized regular, resp.) M -sequence is a
k-regular M -sequence for all k ≥ −1 (k ≥ 0, k ≥ 1, resp.) (Generalized regular
sequences have been studied in [9]).

The following theorem gives a useful necessary and sufficient condition for a
poor k-regular sequence. A nice application of this theorem is a characterization
of filter regular sequences by length of a quotient module, cf. Corollary 4.4.
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Theorem 2.2 ([2], Theorem 2.1). A sequence a1, . . . , an of elements of R is a
poor k-regular M -sequence if and only if

dim
(( i−1∑

j=1

ajM :M ai
)
/

i−1∑
j=1

ajM
)
≤ k

for all i = 1, . . . , n.

As an easy consequence of elementary properties of regular sequences and
definition of k-regular sequences, we have the following:

Theorem 2.3. Let a1, . . . , an be a sequence of elements of R. The following
statements are equivalent:

(i) a1, . . . , an is a poor k-regular M -sequence;
(ii) a1/1, . . . , ai/1 is a poor regular Mp-sequence in Rp for all p ∈

(Supp(M))>k and all i = 1, . . . , n;
(iii) am1

1 , . . . , amn
n is a poor k-regular M -sequence for all m1, . . . ,mn ∈ N.

Lemma 2.4 ([2], Lemma 2.8). Each k-regular M -sequence has finite number
of elements.

Remarks 2.5. (i) Let a1, . . . , an be a k-regular M -sequence contained in I.
Then we say that a1, . . . , an is a maximal k-regular M -sequence contained in
I if there is not an+1 ∈ I such that a1, . . . , an, an+1 is a k-regular M -sequence.

(ii) There exists a k-regular M -sequence contained in I, and each k-regular
M -sequence contained in I can be extended to a maximal k-regularM -sequence
(by Lemma 2.4) (Note that an empty sequence is considered a k-regular M -
sequence of length 0).

Definition. Let I be an ideal of R with (Supp(M/IM))>k ̸= ∅. Then we
denote the length of any maximal k-regular M -sequence contained in I by
k-depth(I,M).

Remark 2.6. Let I be an ideal with (Supp(M/IM))>k ̸= ∅. For all p ∈
Supp(M/IM)>k we have

k < dimR/p ≤ dimM/IM.

Therefore, whenever we are concerned with k-depth(I,M), we should know
that −1 ≤ k < dimM/IM .

Proposition 2.7 ([2], Proposition 3.3(ii)). Let M be a finitely generated R-
module and I be an ideal with (Supp(M/IM))>k ̸= ∅. Let a ∈ I be a k-regular
M -element. Then

k-depth(I,M/aM)=k-depth(I,M)− 1.

Proposition 2.8 ([2], Proposition 3.4). Let the situation be as in Proposition
2.7. Then

k-depth(I,M) = min{k-depth(p,M) | p ∈ V (I)}.
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In the following we generalize the notion of height.

Definition. Let I be an ideal of R with (Supp(M/IM))>k ̸= ∅. The k-height
of I with respect to M is defined by

k-htMI = min{htMp | p ∈ (Supp(M/IM))>k}.
For an ideal I of R with (Supp(M/IM))>k = ∅, we set k-htMI = ∞. In the
case k = −1, the notion of k-htMI is the same as htMI, the height of ideal I
with respect to M .

Remark 2.9 ([2], 4.2(i)). Let p be a prime ideal of R with (Supp(M/pM))>k ̸=
∅. Then

k-htMp = htMp.

The following theorem is a generalization of ([6], Theorem 17.4) when we
put k = −1.

Theorem 2.10. Let M be a finitely generated R-module, with dimM > k. Let
a1, . . . , an be a k-regular M -sequence. Then

k-htM (a1, . . . , an) = n.

Proof. Let a1, . . . , an be a k-regularM -sequence and k-htM (a1, . . . , an) = htMp

for some p ∈ (Supp(M/
∑n

i=1 aiM))>k. Then p is a minimal element of
Supp(M/

∑n
i=1 aiM). Therefore, we have htMp = htMp

(a1/1, . . . , an/1). On
the other hand, since by Theorem 2.3, a1/1, . . . , an/1 is a regular Mp-sequence,
we have

htMp
(a1/1, . . . , an/1) = n,

by ([6], Theorem 17.4). Therefore, the assertion follows. □

By the above theorem, we get a relation between k-depth and k-ht as follows.

Theorem 2.11 ([2], Remark 4.2(i)). Let I be an ideal of R, with

(Supp(M/IM))>k ̸= ∅.

Then

k-depth(I,M)≤k-htMI.

Definition. Let M be a finitely generated R-module. M is called a k-Cohen-
Macaulay module, and denoted by k-C.M., if either k-depth(I,M)=k-htMI for
all ideal I of R with (Supp(M/IM))>k ̸= ∅ or (Supp(M))>k = ∅.

Theorem 2.12 ([2], Theorem 4.4). Let M be a finitely generated R-module.
Then M is a k-C.M. if and only if Mp is Cohen-Macaulay for all

p ∈ (Supp(M))>k.
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3. k-regular sequences and local cohomology modules

In this section, in a Noetherian ring, not necessary local, we give an expres-
sion of local cohomology with respect to any k-regular sequence. If (R,m) is a
local ring, it is the result of ([8], Lemma 3.4), which shows that the local coho-
mology with respect to m is isomorphic to the local cohomology with respect
to any filter regular sequence in m. To prove the main theorem we need the
following lemma.

Lemma 3.1. Let I be an ideal of R, M be a finitely generated R-module and
n be a non-negative integer. Let x1, x2, . . . , xr be r(∈ N) elements of I. If
Hi

(x1,x2,...,xr)
(M) = 0 for all i < n, then

HomR

(
R/I,Hn

(x1,x2,...,xr)
(M)

) ∼= ExtnR(R/I,M).

Proof. Let x = (x1, x2, . . . , xr) and E = ER(M) be the injective envelope of
M . From the exact sequence

0 −→ M −→ E −→ E/M −→ 0

we get the following long exact sequences

0 −→ Γx(M) −→ Γx(E) −→ Γx(E/M)(1)

−→ H1
x(M) −→ H1

x(E) −→ H1
x(E/M)

−→ H2
x(M) −→ · · ·

...

−→ Hi
x(M) −→ Hi

x(E) −→ Hi
x(E/M)

−→ Hi+1
x (M) −→ · · ·

...

−→ Hn−1
x (M) −→ Hn−1

x (E) −→ Hn−1
x (E/M)

−→ Hn
x (M) −→ Hn

x (E) −→ Hn
x (E/M)

−→ · · ·,

. . . −→ Extn−1
R (R/I,E) −→ Extn−1

R (R/I,E/M) −→ ExtnR(R/I,M)(2)

−→ ExtnR(R/I,E) −→ · · · .
We use induction on n. Let n = 0. We have

HomR

(
R/I,Γx(M)

)
= HomR(R/I,M).

Let n = 1. By assumption, Γx(M) = 0. Thus since E is an essential extension
of M and Γx(E) ∩M = 0, we get Γx(E) = 0 (and so ΓI(E) = 0). Therefore
by (1), Γx(E/M) ∼= H1

x(M). Also ΓI(E) = 0 implies that HomR(R/I,E) = 0

and by using (2) we get

Ext1R(R/I,M) ∼= HomR(R/I,E/M)
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= HomR

(
R/I,Γx(E/M)

)
∼= HomR

(
R/I,H1

x(M)
)
.

Now, suppose that n > 1 and for any finitely generated R-module N , such that
Hi

x(N) = 0 for all i < n− 1, we have

HomR

(
R/I,Hn−1

x (N)
) ∼= Extn−1

R (R/I,N).

Therefore since Hi
x(M) = 0 = Hi+1

x (M) for all i < n− 1, we get

Hi
x(E/M) ∼= Hi

x(E) = 0

for all i < n− 1. Thus, by inductive hypothesis,

(3) HomR

(
R/I,Hn−1

x (E/M)
) ∼= Extn−1

R (R/I,E/M).

Also by (1)

(4) Hn−1
x (E/M) ∼= Hn

x (M).

Now, by using (2), (3), and (4), we get

ExtnR(R/I,M) ∼= Extn−1
R (R/I,E/M)

∼= HomR

(
R/I,Hn−1

x (E/M)
)

∼= HomR

(
R/I,Hn

x (M)
)

as required. □

Now, by using above lemma, we obtain one of the main results of this paper
as follows.

Theorem 3.2. Let I be an ideal of R and a1, a2, . . . , an be a k-regular M -
sequence in I such that

(
Supp(M/(a1, . . . , an)M)∖ V (I)

)
≤k

= ∅. Then

(i) Hi
I(M) ∼= Hi

(a1,a2,...,an)
(M) for all i < n,

(ii)
(
ΓI(H

n
(a1,a2,...,an)

(M))
)
p
∼=

(
Hn

I (M)
)
p

for all p ∈
(
Supp(M/(a1, a2, . . . , an)M)

)
>k

.

Proof. (i) Let

0 −→ E0 d0

−→ E1 d1

−→ · · · −→ Ei di

−→ · · ·
be a minimal injective resolution for M . For all i ∈ N0 we have

Ei =
⊕
p

µi(p,M)E(R/p)

in which µi(p,M) is the i-th Bass number of M at the prime ideal p of R.
Let i < n and p ∈

(
Supp(M/(a1, a2, . . . , an)M)

)
>k

. By Theorem 2.3(ii), since

a1/1, . . . , an/1 is a regular Mp-sequence, we have

(5) µi(p,M) = 0.
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Next, we have

ΓI(E
i) =

⊕
p

µi(p,M)ΓI(E(R/p)).

Let q ∈ Supp(M). If q ̸⊇ I, there exists x ∈ I \q. Hence, E(R/q)
x.−→ E(R/q) is

an automorphism. We show that ΓI(E(R/q)) = 0. Let y ∈ ΓI(E(R/q)). Then,
since x ∈ I, xty = 0 for some t ∈ N. Thus y = 0, and so ΓI(E(R/q)) = 0.
Now, Let q ⊇ I. Let y ∈ E(R/q). Then Ity = 0 for some t ∈ N. Hence
ΓI(E(R/q)) = E(R/q). Therefore, we have

(6) ΓI(E
i) =

⊕
p∈Supp(M/IM)

µi(p,M)E(R/p)

for all i < n. Similarly, for the ideal (a1, . . . , an) we get

(7) Γ(a1,...,an)(E
i) =

⊕
p∈Supp(M/(a1,...,an)M)

µi(p,M)E(R/p)

for all i < n. From the hypothesis that
(
Supp(M/(a1, . . . , an)M)∖V (I)

)
≤k

= ∅
we have by (5), (6), (7) that

ΓI(E
i) = Γ(a1,...,an)(E

i)

for all i < n. It therefore follows that

Hi
I(M) = Hi

(a1,...,an)
(M)

for all i < n.
(ii) Let p ∈

(
Supp(M/(a1, . . . , an)M)

)
>k

. Again, by Theorem 2.3(ii), since

a1/1, . . . , an/1 is a regular Mp-sequence in IRp,

Hi
IRp

(Mp) = 0

for all i < n. Now, by Lemma 3.1,

HomRp

(
Rp/IRp,H

n
(a1/1,...,an/1)

(Mp)
) ∼= ExtnRp

(Rp/IRp,Mp)

and so the assertion immediately follows. □

4. k-regular sequences and Koszul complexes

In this section, we obtain a result which shows that dimension of homology
modules of the Koszul complex with respect to any k-regular M -sequence is
less than or equal to k. In particular case, when R is local, the length of such
homology modules with respect to any filter regular sequence is finite. For any
x1, . . . , xn ∈ R, i-th homology module of the Koszul complexK.(x1, . . . , xn;M)
of M with respect to x1, . . . , xn is denoted by Hi(x1, . . . , xn;M).

Theorem 4.1. Let a1, . . . , an be a k-regular M -sequence. Then, for all i > 0,

dim(Hi(a1, . . . , an;M)) ≤ k.
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Proof. We use induction on n. Let n = 1. Since

H1(a1;M) = (0 :M a1)

and, by Theorem 2.2, dim(0 :M a1) ≤ k, we have dim(H1(a1;M)) ≤ k (Note
that for all i ≥ 2, Hi(a1;M) = 0).

Now, suppose that n > 1 and the assertion is true for all k-regular M -
sequences with length of less than n. Considering the following long exact
sequence

· · · −→ Hi(a1, . . . , an−1;M) −→ Hi(a1, . . . , an;M) −→ Hi−1(a1, . . . , an−1;M)

(−1)i−1an−→ Hi−1(a1, . . . , an−1;M) −→ · · · −→ H0(a1, . . . , an;M) −→ 0
and using the inductive hypothesis, for all i > 1, we get

dim(Hi−1(a1, . . . , an−1;M)) ≤ k,

and
dim(Hi(a1, . . . , an−1;M)) ≤ k.

Hence dim(Hi(a1, . . . , an;M)) ≤ k for all i > 1.
Next, let i = 1 and again consider the above exact sequence. Since an is a

k-regular M/(a1, . . . , an−1)M -sequence, by Theorem 2.2,

dim(0 :M/(a1,...,an−1)M an) ≤ k.

Also by inductive hypothesis dim(H1(a1, . . . , an−1;M)) ≤ k. On the other
hand H0(a1, . . . , an−1;M) = M/(a1, . . . , an−1)M . Hence we obtain

dim(H1(a1, . . . , an;M)) ≤ k

and the theorem is proved by induction. □

As an application of Theorem 4.1, we conclude the similar result for filter
regular sequences that Lü and Tang showed in ([5], Proposition 2.2) about
the length of homology modules of correspondence Koszul complex. For this
purpose we need the following lemma.

Lemma 4.2. Let (R,m) be a local ring and N be a finitely generated R-module.
Then following conditions are equivalent:

(i) dim(N) ≤ 0;
(ii) ℓ(N) < ∞.

Proof. It is an easy consequence of definitions of dimension and the length of
N . □

Corollary 4.3. Let (R,m) be a local ring and M be a finitely generated R-
module. Let a1, . . . , an ∈ m be a filter regular M -sequence. Then

ℓ(Hi(a1, . . . , an;M)) < ∞
for all i > 0.

Proof. Let k = 0 in Theorem 4.1 and use Lemma 4.2. □



k-REGULAR SEQUENCES AND THE GENERALIZATION OF F -MODULES 1091

Again by using Lemma 4.2 and Theorem 2.2, we obtain another necessary
and sufficient condition for poor filter regular sequences as follows.

Corollary 4.4. Let (R,m) be a local ring and M be a finitely generated R-
module. Then a1, . . . , an ∈ m is a poor filter regular M -sequence if and only
if

ℓ
( i−1∑

j=1

ajM :M ai/
i−1∑
j=1

ajM
)
< ∞

for all i = 1, . . . , n.

5. k-modules

In this section we generalize the concept of f-modules introduced by P. Schen-
zel, N. V. Trung, and N. T. Cuong in [10] as a generalization of Cohen-Macaulay
modules. In this section, all rings are local.

Definition. Let (R,m) be a local ring. A finitely generated R-module M
is called a k-module if every system of parameters for M is a poor k-regular
M -sequence.

Remarks 5.1. (i) In the case k = −1, (−1)-modules are exactly Cohen-Macaulay
modules.

(ii) In the case k = 0, 0-modules are the same as f-modules.

Now, we give some characterizations of k-modules as follows.

Proposition 5.2. Let (R,m) be a local ring and M be a finitely generated
R-module in which (Supp(M))>k ̸= ∅ and dimM = d > 0. Then the following
conditions are equivalent:

(i) M is a k-module;
(ii) for all subsets of systems of parameters a1, . . . , ar for M and all p ∈(

Ass(M/(a1, . . . , ar)M)
)
>k

,

dimR/p = d− r;

(iii) for all p ∈ (Supp(M))>k, Mp is a Cohen-Macaulay Rp-module and

dimM = dimR/p+ dimMp.

Proof. (i)⇒(ii): Let a1, . . . , ar be a subset of system of parameters for M such
that dimR/p < d− r for some p ∈

(
Ass(M/(a1, . . . , ar)M)

)
>k

. Then we have

p ̸⊆
∪

q ∈ Ass(M/(a1,...,ar)M)

dimR/q=d−r

q.

Therefore, there is a ∈ p such that a ̸∈ q for all q ∈
(
Ass(M/(a1, . . . , ar)M)

)
with dimR/q = d − r. We show that a1, . . . , ar, a form a subset of system of
parameters for M . Since k < dimR/p < d − r, we have k + r < dimR/p +
r < d. But k > −1, so r < k + r + 1 < d. Hence r + 1 < d. Therefore
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t = dimM/(a1, . . . , ar, a)M ≥ d− (r + 1) > 0. Thus we can find t elements,
say b1, . . . , bt in m such that their residues modulo (a1, . . . , ar, a) form a subset
of a system of parameters for M . Therefore, we have d = dimM ≤ t+ r + 1
and so

d− (r + 1) ≤ dimM/(a1, . . . , ar, a)M

≤ dimM/(a1, . . . , ar)M = d− r.

Suppose that dimM/(a1, . . . , ar, a)M=d−r. Let q∈Supp
(
M/(a1, . . . , ar, a)M

)
be such that

dimM/(a1, . . . , ar, a)M = dimR/q.

By assumption, since a ∈ q, we have q ̸∈ Ass
(
M/(a1, . . . , ar)M

)
. Therefore,

q is not a minimal element of Supp
(
M/(a1, . . . , ar)M

)
. Hence, there exists

q′ ∈ Supp
(
M/(a1, . . . , ar)M

)
such that q′ ⫋ q. Therefore

d− r = dimR/q < dimR/q′ ≤ dimM/(a1, . . . , ar)M = d− r,

which is a contradiction. Therefore dimM/(a1, . . . , ar)M = d − (r + 1), and
so a1, . . . , ar, a is a subset of system of parameters for M . Now, since M is a
k-module, a1, . . . , ar, a is a poor k-regular M -sequence which contradicts a ∈ p.

(ii)⇒(iii): Let ¯ : R −→ R/AnnM be the natural homomorphism and p ∈
(Supp(M))>k. Set R̄ = R/AnnM, p̄ = p/AnnM . Let htR̄p̄ = r. Then there
exist ā1, . . . , ār ∈ p̄ such that p̄ is a minimal prime ideal of (ā1, . . . , ār) and
ht(ā1, . . . , ār) = r. Thus

dimR̄− r ≤ dimR̄/(ā1, . . . , ār) ≤ dimR̄− ht(ā1, . . . , ār) = dimR̄− r.

Therefore dimR̄/(ā1, . . . , ār) = dimR̄ − r, and so ā1, . . . , ār is a subset of a
system of parameters for R̄. Hence a1, . . . , ar is a subset of a system of pa-
rameters for M . On the other hand, p ∈ Supp(M) is a minimal prime ideal of
(a1, . . . , ar); hence p ∈ Ass

(
M/(a1, . . . , ar)M

)
. Therefore, by hypothesis

dimR/p = d− r = dimM− htR̄p̄ = dimM − dimMp.

Thus dimR/p + dimMp = dimM for all p ∈
(
Supp(M)

)
>k

. Now, we show

that Mp is a C.M. Rp-module. First we show that a1/1, . . . , ar/1 is a reg-
ular Mp-sequence in pRp. Let 1 ≤ i ≤ r and q ∈ Ass

(
M/(a1, . . . , ai−1)M

)
be such that ai/1 ∈ qRp. Since q ⊆ p, we have dimR/q > k. Thus q ∈(
Ass

(
M/(a1, . . . , ai−1)M

))
>k

and so by hypothesis, dimR/q = d− (i− 1).

Thus

d− (i− 1) = dimR/q ≤ dimM/(a1, . . . , ai)M = d− i

which is a contradiction. Hence

r = dimMp ≥ depthMp ≥ r;

that is depthMp = dimMp. Therefore Mp is C.M.
(iii)⇒(ii): We use induction on r. If r = 0, there is nothing to prove, since for

all p ∈ (Ass(M))>k, dimMp=htMp = 0. Suppose that r > 0 and the result has
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been proved for all non-negative integers less than r. Let a1, . . . , ar be a subset

of a system of parameters for M and p ∈
(
Ass

(
M/(a1, . . . , ar)M

))
>k

be such

that dimR/p > d − r. By hypothesis, r < d − dimR/p = dimMp = depthMp.
Now, we show that a1/1, . . . , ar/1 is a (maximal) regular Mp-sequence in pRp.
Let 1 ≤ i ≤ r be such that

ai/1 ∈ qRp

for some q ∈
(
Ass

(
M/(a1, . . . , ai−1)M

))
>k

. By inductive hypothesis, dimR/p

= d− (i− 1). But ai ∈ q implies that dimR/p ≤ dimM/(a1, . . . , ai)M = d− i,
which is a contradiction. Now, since

pRp ∈ Ass
(
Mp/(a1/1, . . . , ar/1)Mp

)
,

we conclude that a1/1, . . . , ar/1 is a maximal regular Mp-sequence. Thus
depthMp = r which is a contradiction.

(ii)⇒(i): Let a1, . . . , ar be a subset of system of parameters for M . Let
1 ≤ i ≤ r be such that ai ∈ p for some p ∈ Ass

(
M/(a1, . . . , ai−1)M

)
>k

.

Therefore p ∈ Supp
(
M/(a1, . . . , ai)M

)
and so

d− (i− 1) = dimR/p ≤ dimM/(a1, . . . , ai)M = d− i

which is a contradiction. □

As an immediate consequence of Proposition 5.2 and Theorem 2.12, we have
the following result.

Corollary 5.3. Let (R,m) be a local ring and M be a finitely generated R-
module such that (Supp(M))>k ̸= ∅. Then the following conditions are equival-
ent:

(i) M is a k-module;
(ii) M is k-C.M. and for all p ∈ (Supp(M))>k,

dimM = dimR/p+ dimMp.

In the following, we give another characterization for k-modules by the no-
tion of k-depth.

Theorem 5.4. Let (R,m) be a local ring and M be a finitely generated R-
module. Then M is a k-module if and only if for all p ∈ (Supp(M))>k,

k-depth(p,M) = dimM − dimR/p.

Proof. Let d = dimM . We note that if d = 0, then for all p ∈ (Supp(M))>k, by
Remark 2.6, k < dimR/p ≤ dimM = 0 that implies k = −1. Thus k-modules
are C.M. modules and the assertion is obvious.

(=⇒) Let p ∈ (Supp(M))>k and r = k-depth(p,M). Let a1, . . . , ar ∈ p be a
maximal k-regular M -sequence. Thus, there exists

q ∈
(
Ass

(
M/(a1, . . . , ar)M

))
>k
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such that p ⊆ q. By Proposition 5.2, part (i)⇒(ii), dimR/q = d− r and again
by the same Proposition, part (i)⇒(iii), and Remark 2.9 and Theorem 2.10,
we have

dimR/p = dimM − dimMp = d− htMp ≤d −(k-htM (a1, . . . , ar))=d−r.

Hence p = q. Again by Proposition 5.2, part (i)⇒(ii), k-depth(p,M) = r =
d− dimR/p as required.

(⇐=) By induction on d we show that M is a k-module. Assume that the
assertion is true for all R-modules with dimension less than d. Let a1, . . . , ad
be a system of parameters for M . Then a1 is a k-regular M -element. Because
if there is p ∈ (Ass(M))>k such that a1 ∈ p, then

dimM=k-depth(p,M) + dimR/p = dimR/p ≤ dimM/a1M = dimM − 1

which is a contradiction.
Now, let M1 = M/a1M . Then dimM1 = d− 1 and a2, . . . , ad is a system of

parameters for M1. For any p ∈ (Supp(M1))>k, since a1 ∈ p, we have

k-depth(p,M1) = k-depth(p,M)− 1

= dimM − dimR/p− 1

= dimM1 − dimR/p.

Therefore by inductive hypothesis, a2, . . . , ad is a k-regular M1-sequence. Thus
a1, . . . , ad is a k-regular M -sequence and the theorem is proved by induction.

□

At the end, we show that for k-modules, the equality of Theorem 5.4, holds
even for not necessary prime ones.

Lemma 5.5. Let (R,m) be a local ring, M be a finitely generated R-module,
and I be an ideal of R such that

(
Supp(M/IM)

)
≤k

= ∅ and I ⊇ AnnM . Then

k-htMI ≤ dimM − dimR/I.

Proof. Since

k-htMI = min{htMp | p ∈ (Supp(M/IM))>k}

and, by hypothesis

dimR/I = sup{dimR/p | p ∈ (Supp(M/IM))>k},
it is enough to show that for all p∈ (Supp(M/IM)), k-htMp ≤ dimM−dimR/p.
But by Remark 2.9, for all p ∈

(
Supp(M/IM)

)
>k

, k-htMp = htMp, thus the
assertion is obvious. □

Theorem 5.6. Let (R,m) be a local ring, M be a k-module, and I be an ideal
of R such that

(
Supp(M/IM)

)
≤k

= ∅ and I ⊇ AnnM . Then

k-depth(I,M)=k-htMI = dimM − dimR/I.
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Proof. If k = −1, then the concepts of k-module, k-depth and k-ht coincide
with the concepts C.M., depth and ht. Thus the assertion is trivial. Therefore,
we assume that k > −1. By Proposition 2.8, the assumption, and Theorem 5.4
and Lemma 5.5,

k-depth(I,M) = min{k-depth(p,M) | p ∈ V (I)}
= min{k-depth(p,M) | p ∈ (Supp(M/IM))>k}
= dimM −max{dimR/p | p ∈ (Supp(M/IM))>k}
= dimM − dimR/I.

On the other hand, by Theorem 2.11 and Lemma 5.5,

dimM − dimR/I=k-depth(I,M) ≤k-htMI ≤ dimM − dimR/I,

as required. □
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