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INTERVAL CRITERIA FOR FORCED OSCILLATION OF

DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN AND

NONLINEARITIES GIVEN BY RIEMANN-STIELTJES

INTEGRALS

Taher S. Hassan and Qingkai Kong

Abstract. We consider forced second order differential equation with
p-Laplacian and nonlinearities given by a Riemann-Stieltjes integrals in
the form of(
p(t)ϕγ

(
x′(t)

))′
+ q0 (t)ϕγ (x(t)) +

∫ b

0
q (t, s)ϕα(s) (x(t)) dζ (s) = e(t),

where ϕα (u) := |u|α sgnu, γ, b ∈ (0,∞) , α ∈ C [0, b) is strictly increasing

such that 0 ≤ α (0) < γ < α (b−), p, q0, e ∈ C ([t0,∞),R) with p (t) > 0
on [t0,∞), q ∈ C ([0,∞)× [0, b)), and ζ : [0, b) → R is nondecreasing.
Interval oscillation criteria of the El-Sayed type and the Kong type are
obtained. These criteria are further extended to equations with deviating

arguments. As special cases, our work generalizes, unifies, and improves
many existing results in the literature.

1. Introduction

We are concerned with the oscillatory behavior of forced second order dif-
ferential equations with p-Laplacian and nonlinearities given by a Riemann-
Stieltjes integrals in the form of

(1.1) (p(t)ϕγ (x
′(t)))

′
+ q0 (t)ϕγ (x(t)) +

∫ b

0

q (t, s)ϕα(s) (x(t)) dζ (s) = e(t),

where ϕα (u) := |u|α sgnu, γ, b ∈ (0,∞) , α ∈ C [0, b) is strictly increasing such
that 0 ≤ α (0) < γ < α (b−), p, q0, e ∈ C ([t0,∞),R) with p (t) > 0 on [t0,∞),
q ∈ C ([0,∞)× [0, b)), and ζ : [0, b) → R is nondecreasing. Our interest is to
establish oscillation criteria for Eq.(1.1) without assuming that q0(t), q (t, s),

and e(t) are of definite sign. Here
∫ b

0
f(s)dζ(s) denotes the Riemann-Stieltjes

integral of the function f on [0, b) with respect to ζ.
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We note that as special cases, the integral term in the equation becomes a
finite sum when ζ (s) is a step function and a Riemann integral when ζ (s) = s.

As usual, a solution x(t) of Eq.(1.1) is said to be oscillatory if it is defined
on some ray [T,∞) with T ≥ 0, and has unbounded set of zeros. Eq.(1.1) is
said to be oscillatory if every solution extendible throughout [tx,∞) for some
tx ≥ 0 is oscillatory.

In the last 50 years, there has been extensive work on oscillation and nonoscil-
lation of various differential equations, see [1, 3–11, 13, 16–30, 32–39] and the
references cited therein.

Sun and Wong [35] investigated the following forced equation with mixed
nonlinearities

(p(t)x′(t))
′
+ q0 (t)x(t) +

N∑
j=0

qj(t)ϕαj (x(t)) = e(t),

where p, q0 and e satisfy the same assumptions as for Eq.(1.1), qj ∈ C [0,∞)
and

α1 > α2 > · · · > αm > 1 > αm+1 > · · · > αN > 0.

Without imposing a restriction on the forcing term e (t) given by Kartsatos and
others, see [16,17], that e (t) is the second derivative of an oscillatory function.
Hassan, Erbe and Peterson [14] discussed the oscillation of an equation with
p-Laplacian, more specifically, they established oscillation criteria of El-Sayed-
type for the equation

(
p(t) (x′(t))

γ)′
+ q0 (t)x

γ (t) +
N∑
j=1

qj(t)ϕαj (x(t)) = e(t),

where ϕα (u) := |u|α sgnu, γ is a quotient of odd positive integers and αj > 0,
j = 1, 2, . . . , N , such that

α1 > α2 > · · · > αm > γ > αm+1 > · · · > αN > 0.

Hassan and Kong [15] considered the forced second order differential equations
with p-Laplacian in the form of

(1.2) (p(t)ϕγ (x
′(t)))

′
+

N∑
j=0

qj(t)ϕαj (x(t)) = e(t),

where γ, αj > 0, j = 0, 1, 2, . . . , N , such that

(1.3) αj > γ, j = 1, 2, . . . , l; and αj < γ, j = l + 1, l + 2, . . . , N.

They established oscillation criteria of El-Sayed-type and Kong-type for Eq.
(1.2). Recently, Sun and Kong [31] considered the equation (1.1) when γ = 1.
Motivated by the above, in this paper, we will establish interval oscillation
criteria of both the El-Sayed-type and the Kong-type for the more general
equation (1.1). Clearly, our work is of significance because Eq.(1.1) not only
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contains a p-Laplacian term but also allows an infinite number of nonlinear
terms and even a continuum of nonlinearities determined by the function ζ.

Finally, we will extend the results for Eq.(1.1) to forced nonlinear differential
equations with deviating arguments in the form
(1.4)

(p(t)ϕγ (x
′(t)))

′
+ q0 (t)ϕγ (x(t)) +

∫ b

0

q (t, s)ϕα(s) (x(g(t, s))) dζ (s) = e(t),

where, in addition to the assumptions for Eq.(1.1), g∈C ([0,∞)× [0, b) , [0,∞))
such that limt→∞ g(t, s) = ∞ for s ∈ [0, b) .

This paper is organized as follows: after this introduction, we state our main
results for Eqs.(1.1) and (1.4) in Section 2. All proofs are given in Section 3.

2. Main results

We denote by Lζ (0, b) the set of Riemann-Stieltjes integrable functions on
[0, b) with respect to ζ. Let a ∈ (0, b) such that α (a) = γ. We further assume
that

α−1 ∈ Lζ (0, b) such that

∫ a

0

dζ (s) > 0 and

∫ b

a

dζ (s) > 0.

We see that the condition α−1 ∈ Lζ (0, b) is satisfied if either α (0) > 0 or
α (s) → 0 “slowly” as s → 0+, or ζ (s) is constant in a right neighborhood
of 0. To state our main results, we begin with the following lemma which
generalizes [31, Lemma 1].

Lemma 2.1. Let

m := γ

(∫ b

a

dζ (s)

)−1 ∫ b

a

α−1 (s) dζ (s)

and

n := γ

(∫ a

0

dζ (s)

)−1 ∫ a

0

α−1 (s) dζ (s) .

Then for any δ ∈ (m,n), there exists η ∈ Lζ (0, b) such that η (s) > 0 on [0, b) ,

(2.1)

∫ b

0

α (s) η (s) dζ (s) = γ and

∫ b

0

η (s) dζ (s) = δ.

We note from the definition ofm and n that 0 < m < 1 < n. In the following,
we will use the values of δ in the interval (m, 1] to establish interval criteria for
oscillation of Eq.(1.1). Our first result provides an oscillation criterion of the
El-Sayed-type.

Theorem 2.1. Suppose that for any T ≥ 0 and for i = 1, 2, there exist con-
stants ai and bi with T ≤ ai < bi and (a1, b1) ∩ (a2, b2) = ∅ such that, for
i = 1, 2

(2.2) q (t, s) ≥ 0 for (t, s) ∈ [ai, bi]× [0, b)
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and

(2.3) (−1)
i
e (t) ≥ 0 for t ∈ [ai, bi] .

Assume further that for i = 1, 2, there exists ui ∈ C1 [ai, bi] satisfying ui (ai) =
ui (bi) = 0 and ui (t) ̸≡ 0 on [ai, bi] such that

(2.4) sup
δ∈(m,1]

∫ bi

ai

[
Q (t) |ui (t)|γ+1 − p(t) |u′i (t)|

γ+1
]
dt > 0,

where

(2.5) Q (t) := q0 (t) +

[
|e(t)|
1− δ

]1−δ

exp

(∫ b

0

η (s) ln
q (t, s)

η (s)
dζ (s)

)
with η (s) implicitly defined as in Lemma 2.1 based on δ. Here we use the

convention that ln 0 = −∞, e−∞ = 0, and 01−δ = 1 and (1− δ)
1−δ

= 1 for
δ = 1. Then Eq.(1.1) is oscillatory.

Remark 2.1. (i) We observe that in Theorem 2.1, if the supremum in (2.4)
is assumed at δ = 1, the effect of e(t) is neglected in some extent. This
implies that the magnitude of e(t) in [ai, bi] cannot be large. For otherwise,
the supremum would have been taken at some δ ∈ (m, 1).

(ii) Contrast to the results in the literature, by choosing different values of
γ, Eq.(1.1) allows the nonlinearities of the unknown function in the integral
term to be all sublinear, all superlinear, or mixed.

Following Philos [24], Kong [19], and Kong [20], we say that for any a, b ∈ R
such that a < b, a function H (t, s) belongs to a function class H(a, b), denoted
by H ∈ H(a, b), if H ∈ C (D,R), where D := {(t, s) : b ≥ t ≥ s ≥ a}, which
satisfies

(2.6) H (t, t) = 0, H (b, s) > 0 and H (s, a) > 0 for b > s > a,

and H (t, s) has continuous partial derivatives ∂H (t, s) /∂t and ∂H(t, s)/∂s on
[a, b]× [a, b] such that

(2.7)
∂H (t, s)

∂t
= (γ + 1)h1 (t, s)H

γ
γ+1 (t, s)

and

(2.8)
∂H (t, s)

∂s
= (γ + 1)h2 (t, s)H

γ
γ+1 (t, s) ,

where h1, h2 ∈ Lloc (D,R). Next, we use the function class H(a, b) to establish
an oscillation criterion for Eq.(1.1) of the Kong-type.

Theorem 2.2. Suppose that for any T ≥ 0 and for i = 1, 2, there exist con-
stants ai and bi with T ≤ ai < bi such that (2.2) and (2.3) hold. Assume
further that for i = 1, 2, there exists ci ∈ (ai, bi) and Hi ∈ H(ai, bi) such that

sup
δ∈(m,1]

{
1

Hi (ci, ai)

∫ ci

ai

[
Q (s)Hi (s, ai)− p(s) |hi1 (s, ai)|γ+1

]
ds
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(2.9) +
1

Hi (bi, ci)

∫ bi

ci

[
Q (s)Hi (bi, s)− p(s) |hi2 (bi, s)|γ+1

]
ds

}
> 0,

where Q (t) is defined by (2.5). Then Eq.(1.1) is oscillatory.

Remark 2.2. (i) When γ = 1, Theorems 2.1 and 2.2 unify and improve Theo-
rems 2.1 and 2.2 in [31].

(ii) For N ∈ N and s ∈ [0, N + 1) we let

ζ (s) =
N∑
j=1

χ (s− j) with χ (s) =

{
1, s ≥ 0
0, s < 0;

α ∈ C [0, N + 1) such that α (j) = αj , j = 0, 1, . . . , N , satisfying (1.3); and
q (t, j) = qj (t) ∈ C [0,∞) for j = 0, 1, . . . , N. Then by a simple computation,
we see that Lemma 2.1 and Theorems 2.1 and 2.2 reduce to Lemma 2.1, and
Theorems 2.1 and 2.2 in [15], respectively.

In the following, we state the interval oscillation criteria for Eq.(1.4).

Theorem 2.3. Assume

g∗ (t) := inf
s∈[0,b)

{t, g (t, s)} and g∗ (t) := sup
s∈[0,b)

{t, g (t, s)}

exist. Suppose that for any T ≥ 0 and for i = 1, 2, there exist constants
ai, bi ∈ [T,∞) with T ≤ ai < bi such that

(2.10) q0(t) ≥ 0 for t ∈ [g∗ (ai) , g
∗ (bi)],

(2.11) q (t, s) ≥ 0 for (t, s) ∈ [g∗ (ai) , g
∗ (bi)]× [0, b) ,

and

(2.12) (−1)
i
e (t) ≥ 0, for t ∈ [g∗ (ai) , g

∗ (bi)] .

Assume further that there exists u ∈ C1 [ai, bi] satisfying u (ai) = u (bi) = 0,
i = 1, 2, u (t) ̸≡ 0 on [ai, bi] such that for i = 1, 2,

sup
δ∈(m,1]

∫ bi

ai

[
Qi (t) |ui (t)|γ+1 − p(t) |u′i (t)|

γ+1
]
dt > 0,

where

(2.13) Qi (t) := q0 (t)+

[
|e(t)|
1− δ

]1−δ

exp

(∫ b

0

η (s) ln
q (t, s)ψ

α(s)
i (t, s)

η (s)
dζ (s)

)
,

and

(2.14) ψi (t, s) :=

 δi (t, s) , g (t, s) < t
1, g (t, s) = t
ζi (t, s) , g (t, s) > t
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with

δi (t, s) :=

∫ g(t,s)

g(ai,s)

ds

p
1
γ (s)

(∫ t

g(ai,s)

ds

p
1
γ (s)

)−1

and

ζi (t, s) :=

∫ g(bi,s)

g(t,s)

ds

p
1
γ (s)

(∫ g(bi,s)

t

ds

p
1
γ (s)

)−1

and with ηj as in Lemma 2.1 based on δ. Here we use the convention that

01−δ = 1 and (1− δ)
1−δ

= 1 when δ = 1. Then Eq.(1.4) is oscillatory.

Theorem 2.4. Suppose that for any T ≥ 0 and for i = 1, 2, there exist con-
stants ai and bi with T ≤ ai < bi such that (2.10)-(2.12) hold. Assume further
that there exist ci ∈ (ai, bi) and Hi ∈ H(ai, bi) such that

sup
δ∈(m,1]

{
1

Hi (ci, ai)

∫ ci

ai

[
Qi (s)Hi (s, ai)− p(s) |hi1 (s, ai)|γ+1

]
ds

+
1

Hi (bi, ci)

∫ bi

ci

[
Qi (s)Hi (bi, s)− p(s) |hi2 (bi, s)|γ+1

]
ds

}
> 0,

where Qi (t) is defined by (2.13). Then Eq.(1.4) is oscillatory.

3. Proofs

Proof of Lemma 2.1. Let

η1 (s) :=

{
0, s ∈ (0, a)

γα−1 (s)
(∫ b

a
dζ (s)

)−1

, s ∈ [a, b)

and

η2 (s) :=

{
γα−1 (s)

(∫ a

0
dζ (s)

)−1
, s ∈ (0, a)

0, s ∈ [a, b) .

Clearly for i = 1, 2, ηi ∈ Lζ (0, b) and∫ b

0

α (s) ηi (s) dζ (s) = γ.

Moreover, ∫ b

0

η1 (s) dζ (s) = m and

∫ b

0

η2 (s) dζ (s) = n.

For k ∈ [0, 1] let

η (s, k) := (1− k) η1 (s) + kη2 (s) , s ∈ [0, b) .

Then it is easy to see that∫ b

0

α (s) η (s, k) dζ (s) = γ.
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Furthermore, since η (s, 0) = η1 (s) and η (s, 1) = η2 (s), we have∫ b

0

η (s, 0) dζ (s) = m and

∫ b

0

η (s, 1) dζ (s) = n.

By the continuous dependence of η (s, k) on k there exists k∗ ∈ (0, 1) such that
η (s) := η (s, k∗) satisfies that ∫ b

0

η (s) dζ (s) = δ.

Note that η (s) > 0 for s ∈ [0, b) and
∫ b

0
α (s) η (s) dζ (s) = γ. □

The next lemma is a generalized Arithmetic-Geometric mean inequality es-
tablished in [31].

Lemma 3.1. Let u ∈ C [0, b) and η ∈ Lζ (0, b) satisfying u ≥ 0, η > 0 on [0, b)

and
∫ b

0
η (s) dζ (s) = 1. Then∫ b

0

η (s)u (s) dζ (s) ≥ exp

(∫ b

0

η (s) ln [u (s)] dζ (s)

)
,

where we use the convention that ln 0 = −∞ and e−∞ = 0.

Proof of Theorem 2.1. Assume Eq.(1.1) has an extendible solution x(t) which
is eventually positive or negative. Then, without loss of generality, assume
x (t) > 0 for all t ≥ T ≥ 0, where T depends on the solution x (t). When
x (t) is an eventually negative, the proof follows the same way except that the
interval [a2, b2], instead of [a1, b1], is used. Define

(3.1) z (t) :=
p(t)ϕγ (x

′(t))

ϕγ (x(t))
, t ≥ T.

It follows from (1.1) that for t ≥ T , z (t) satisfies the first order nonlinear
Riccati equation

(3.2) z′ (t) = −q0 (t)−
∫ b

0

q (t, s) [x (t)]
α(s)−γ

dζ (s)+e(t)x−γ(t)− γ |z (t)|
γ+1
γ

p
1
γ (t)

.

From the assumption, there exists a nontrivial interval [a1, b1] ⊂ [T,∞) such
that (2.2) and (2.3) hold with i = 1.

(I) We first consider the case where the supremum in (2.4) is assumed at
δ = 1. From (2.3) and (3.2), we have that for t ∈ [a1, b1]

(3.3) z′ (t) ≤ −q0 (t)−
∫ b

0

q (t, s) [x (t)]
α(s)−γ

dζ (s)− γ |z (t)|
γ+1
γ

p
1
γ (t)

.
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Let η ∈ Lζ (0, b) be defined as in Lemma 2.1 with δ = 1. Then η satisfies (2.1)
with δ = 1. This follows that∫ b

0

η (s) [α (s)− γ] dζ = 0.

Then, from Lemma 3.1, we get, for t ∈ [a1, b1]∫ b

0

q (t, s) [x (t)]
α(s)−γ

dζ (s)

=

∫ b

0

η (s)
q (t, s)

η (s)
[x (t)]

α(s)−γ
dζ (s)

≥ exp

(∫ b

0

η (s) ln

(
q (t, s)

η (s)
[x (t)]

α(s)−γ

)
dζ (s)

)

= exp

(∫ b

0

η (s) ln

[
q (t, s)

η (s)

]
dζ (s) + ln (x (t))

∫ b

0

η (s) [α (s)− γ] dζ (s)

)

= exp

(∫ b

0

η (s) ln

[
q (t, s)

η (s)

]
dζ (s)

)
.

This together with (3.3) shows that

(3.4) z′ (t) ≤ −Q (t)− γ |z (t)|
γ+1
γ

p
1
γ (t)

for t ∈ [a1, b1] ,

where Q (t) is defined by (2.5) with δ = 1. Multiplying both sides of (3.4) by

|u1 (t)|γ+1
, integrating from a1 to b1, and using integration by parts, we find

that ∫ b1

a1

Q (t) |u1 (t)|γ+1
dt(3.5)

≤
∫ b1

a1

[
(γ + 1)ϕγ(u1(t))u

′
1 (t) z (t)−

γ |u1 (t)|γ+1

p
1
γ (t)

|z (t)|
γ+1
γ

]
dt

≤
∫ b1

a1

[
(γ + 1) |u1 (t)|γ |u′1 (t)| |z (t)| −

γ |u1 (t)|γ+1

p
1
γ (t)

|z (t)|
γ+1
γ

]
dt.

Let λ := γ+1
γ . Define A and B by

Aα :=
γ |u1 (t)|γ+1

p
1
γ (t)

|z (t)|λ and B α−1 := |u′1 (t)| (γp(t))
1

γ+1 .

Using the inequality in [12] we have

(3.6) αAB α−1 −Aα ≤ (α− 1)B α,
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i.e.,

(γ + 1) |u′1 (t)| |u1 (t)|
γ |z (t)| − γ |u1 (t)|γ+1

p
1
γ (t)

|z (t)|λ ≤ p(t) |u′1 (t)|
γ+1

,

which together with (3.5) implies that∫ b1

a1

Q (t) |u1 (t)|γ+1
dt ≤

∫ b1

a1

p(t) |u′1 (t)|
γ+1

dt.

This leads to a contradiction to (2.4).
(II) Now, we consider the case where the supremum in (2.4) is assumed at

δ ∈ (m, 1). Then from (2.3) we see that for t ∈ [a1, b1]
(3.7)

z′ (t) = −q0 (t)−
∫ b

0

q (t, s) [x (t)]
α(s)−γ

dζ (s)− |e(t)|x−γ(t)− γ |z (t)|
γ+1
γ

p
1
γ (t)

.

Let η̃ (s) = δ−1η (s). Then from (2.1) we have

(3.8)

∫ b

0

η̃ (s) dζ (s) = 1 and

∫ b

0

η̃ (s) [δα (s)− γ] dζ = 0.

Hence for t ∈ [a1, b1]∫ b

0

q (t, s) [x (t)]
α(s)−γ

dζ (s) + |e(t)|x−γ(t)

=

∫ b

0

η̃ (s)
(
δη−1 (s) q (t, s) [x (t)]

α(s)−γ
+ |e(t)|x−γ(t)

)
dζ (s) .(3.9)

Using the Arithmetic-Geometric mean inequality, see [2, Page 17],

ch+ dk ≥ chdk, where c, d ≥ 0, h, k > 0 and h+ k = 1,

with

c = η−1 (s) q (t, s) [x (t)]
α(s)−γ

, d =
1

1− δ
|e(t)|x−γ(t), h = δ and k = 1− δ,

we have that for t ∈ [a1, b1] and s ∈ [0, b)

δη−1 (s) q (t, s) [x (t)]
α(s)−γ

+ (1− δ)
|e(t)|
1− δ

x−γ(t)

≥
[
q (t, s)

η (s)

]δ [ |e(t)|
1− δ

]1−δ

[x (t)]
δα(s)−γ

.

Substituting this into (3.9) and using Lemma 3.1 and (3.8), we see that for
t ∈ [a1, b1]

∫ b

0

q (t, s) [x (t)]
α(s)−γ

dζ (s) + |e(t)|x−γ(t)

(3.10)
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≥ exp

(∫ b

0

η̃ (s) ln

([
q (t, s)

η (s)

]δ [ |e(t)|
1− δ

]1−δ

[x (t)]
δα(s)−γ

)
dζ (s)

)

= exp

(∫ b

0

η̃ (s)

(
ln

[
q (t, s)

η (s)

]δ
+ ln

[
|e(t)|
1− δ

]1−δ

+ [δα (s)− γ] lnx (t)

)
dζ (s)

)

=

[
|e(t)|
1− δ

]1−δ

exp

(∫ b

0

η (s) ln
q (t, s)

η (s)
dζ (s)

)
.

It follows from (3.7) and (3.10) that for t ∈ [a1, b1]

z′ (t) ≤ −q0 (t)−
[
|e(t)|
1− δ

]1−δ

exp

(∫ b

0

η (s) ln
q (t, s)

η (s)
dζ (s)

)
− γ |z (t)|

γ+1
γ

p
1
γ (t)

= −Q (t)− γ |z (t)|
γ+1
γ

p
1
γ (t)

,(3.11)

where Q (t) is defined by (2.5) with δ ∈ (m, 1) . The rest of the proof is similar
to Part (I) and hence is omitted. □

Proof of Theorem 2.2. Assume Eq.(1.1) has an extendible solution x(t) which
is eventually positive or negative. Then, without loss of generality, assume
x (t) > 0 for all t ≥ T ≥ 0, where T depends on the solution x (t). Define z(t)
by (3.1). From (3.4) and (3.11), we get that

(3.12) z′ (t) ≤ −Q (t)− γ |z (t)|
γ+1
γ

p
1
γ (t)

.

Multiplying both sides of (3.12), with t replaced by s, by H1 (b1, s) and inte-
grating with respect to s from c1 to b1, we find that∫ b1

c1

Q (s)H1 (b1, s) ds

≤ −
∫ b1

c1

z′ (s)H1 (b1, s) ds−
∫ b1

c1

γ |z (t)|
γ+1
γ

p
1
γ (t)

H1 (b1, s) ds.

Using integration by parts and from (2.6) and (2.8), we obtain that∫ b1

c1

Q (s)H1 (b1, s) ds

≤ z (c1)H1 (b1, c1) +

∫ b1

c1

[
(γ + 1)h12 (b1, s)H

γ
γ+1

1 (b1, s) z (s)

− γ |z (s)|
γ+1
γ H1 (b1, s)

p
1
γ (t)

]
ds
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≤ z (c1)H1 (b1, c1) +

∫ b1

c1

[
(γ + 1) |h12 (b1, s) |H

γ
γ+1

1 (b1, s) |z (s) |

− γ |z (s)|
γ+1
γ H1 (b1, s)

p
1
γ (t)

]
ds.(3.13)

Let λ = γ+1
γ . Define A and B by

Aα :=
γ |z (s)|λH1 (b1, s)

p
1
γ (t)

and Bα−1 := (γp(s))
1

γ+1 |h12 (b1, s)| .

Then, using the inequality (3.6), we get that

(γ + 1) |h12 (b1, s)|H
γ

γ+1

1 (b1, s) |z (s)| −
γ |z (s)|

γ+1
γ H1 (b1, s)

p
1
γ (s)

≤ p(s) |h12 (b1, s)|γ+1
.

This together with (3.13) shows that

(3.14)
1

H1 (b1, c1)

∫ b1

c1

[
Q (s)H1 (b1, s)− p(s) |h12 (b1, s)|γ+1

]
ds ≤ z (c1) .

Similarly, multiplying both sides of (3.12), with t replaced by s, by H1 (s, a1)
and integrating by parts from a1 to c1, we see that

(3.15)
1

H1 (c1, a1)

∫ c1

a1

[
Q (s)H1 (s, a1)− p(s) |h11 (s, a1)|γ+1

]
ds ≤ −z (c1) .

Combining (3.14) and (3.15) we get that

1

H1 (c1, a1)

∫ c1

a1

[
Q (s)H1 (s, a1)− p(s)hγ+1

11 (s, a1)
]
ds

+
1

H1 (b1, c1)

∫ b1

c1

[
Q (s)H1 (b1, s)− p(s)hγ+1

12 (b1, s)
]
ds ≤ 0.

This contradicts (2.9) with i = 1. □

The following lemma, which was established in [15], plays a key role in the
proof of the oscillation criteria for Eq.(1.4).

Lemma 3.2. Suppose that for any T ≥ 0 and for i = 1, 2, there exist constants
ai and bi with T ≤ ai < bi such that (2.10)-(2.12) hold. Assume Eq.(1.4) has
a nonoscillatory solution x(t) on [0,∞). Then for t ∈ [ai, bi] with i = 1, 2,

x (g (t, s))

x (t)
≥ ψi (t, s) for i = 1, 2,

where ψi (t, s) is defined by (2.14).
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Proof of Theorems 2.3 and 2.4. Without loss of generality, we may assume
x(t), x(g(t, s)) > 0 for all s ∈ [0, b) and t ≥ T ≥ 0. Define z(t) by (3.1).
Then

z′ (t) = −q0 (t)−
∫ b

0

q (t, s)
xα(s) (g (t, s))

xγ (t)
dζ (s) + e(t)x−γ(t)− γ |z (t)|

γ+1
γ

p
1
γ (t)

.

From the assumption, there exist constants a1 and b1 with a1 < b1 and
[g∗ (a1) , g

∗ (b1)] ⊂ [t0,∞) such that (2.10)-(2.12) hold with i = 1. Then from
Lemma 3.2 we have that for t ∈ [a1, b1] and j = 0, 1, 2, . . . , N

xα(s) (g (t, s))

xγ (t)
≥ ψ

α(s)
1 (t, s) [x (t)]

α(s)−γ
.

The rest of the proof is similar to those of Theorem 2.1 and 2.2, and is hence
omitted. □
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