DOI QR코드

DOI QR Code

Optical Constants and Dispersion Parameters of CdS Thin Film Prepared by Chemical Bath Deposition

  • Park, Wug-Dong (Electronic Materials and Devices Laboratory, Department of Railroad Drive and Control, Dongyang University)
  • 투고 : 2012.04.02
  • 심사 : 2012.06.14
  • 발행 : 2012.08.25

초록

CdS thin film was prepared on glass substrate by chemical bath deposition in an alkaline solution. The optical properties of CdS thin film were investigated using spectroscopic ellipsometry. The real (${\varepsilon}_1$) and imaginary (${\varepsilon}_2$) parts of the complex dielectric function ${\varepsilon}(E)={\varepsilon}_1(E)+i{\varepsilon}_2(E)$, the refractive index n(E), and the extinction coefficient k(E) of CdS thin film were obtained from spectroscopic ellipsometry. The normal-incidence reflectivity R(E) and absorption coefficient ${\alpha}(E)$ of CdS thin film were obtained using the refractive index and extinction coefficient. The critical points $E_0$ and $E_1$ of CdS thin film were shown in spectra of the dielectric function and optical constants of refractive index, extinction coefficient, normal-incidence reflectivity, and absorption coefficient. The dispersion of refractive index was analyzed by the Wemple-DiDomenico single-oscillator model.

키워드

참고문헌

  1. Y.-J. Chang, C. L. Munsee, G. S. Herman, J. F. Wager, P. Mugdur, D.-H. Lee, and C.-H. Chang, Surf. Interface Anal. 37, 398 (2005) [DOI: 10.1002/sia.2012].
  2. P. K. Ghosh, S. Jana, U. N. Maity, and K. K. Chattopadhyay, Physica E 35, 178 (2006) [DOI: 10.1016/j.physe.2006.07.029].
  3. R. N. Bhattacharya, K. Ramanathan, L. Gedvilas, and B. Keyes, J. Phys. Chem. Solids 66, 1862 (2005) [DOI: 10.1016/j.jpcs.2005.09.006].
  4. D. Abou-Ras, G. Kostorz, A. Romeo, D. Rudmann, and A. N. Tiwari, Thin Solid Films 480-481, 118 (2005) [DOI: 10.1016/j.tsf.2004.11.033].
  5. N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, and V. Canevari, Sol. Energy Mater. Sol. Cells 58, 209 (1999). https://doi.org/10.1016/S0927-0248(98)00204-9
  6. A. Podestà, N. Armani, G. Salviati, N. Romeo, A. Bosio, and M. Prato, Thin Solid Films 511-512, 448 (2006) [DOI: 10.1016/j.tsf.2005.11.069].
  7. V. Singh, B. P. Singh, T. P. Sharma, and R. C. Tyagi, Opt. Mater. 20, 171 (2002). https://doi.org/10.1016/S0925-3467(02)00043-5
  8. S. A. Al Kuhaimi, Vacuum 51, 349 (1998). https://doi.org/10.1016/S0042-207X(98)00112-2
  9. S. Mathew, P. S. Mukerjee, and K. P. Vijayakumar, Thin Solid Films 254, 278 (1995). https://doi.org/10.1016/0040-6090(94)06257-L
  10. M. G. Sandoval-Paz, M. Sotelo-Lerma, A. Mendoza-Galvan, and R. Ramírez-Bon, Thin Solid Films 515, 3356 (2007) [DOI: 10.1016/j.tsf.2006.09.024].
  11. I. Yu, T. Isobe, and M. Senna, Mater. Res. Bull. 30, 975 (1995). https://doi.org/10.1016/0025-5408(95)00082-8
  12. M. B. Ortuno-Lopez, J. J. Valenzuela-Jauregui, M. Sotelo-Lerma, A. Mendoza-Galvan, and R. Ramirez-Bon, Thin Solid Films 429, 34 (2003). https://doi.org/10.1016/S0040-6090(03)00144-5
  13. P. J. Sebastian, J. Campos, and P. K. Nair, Thin Solid Films 227, 190 (1993). https://doi.org/10.1016/0040-6090(93)90038-Q
  14. W. J. Danaher, L. E. Lyons, and G. C. Morris, Sol. Energy Mater. 12, 137 (1985). https://doi.org/10.1016/0165-1633(85)90029-2
  15. D. Lincot and R. Ortega-Borges, J. Electrochem. Soc. 139, 1880 (1992). https://doi.org/10.1149/1.2069515
  16. L. Wenyi, C. Xun, C. Qiulong, and Z. Zhibin, Mater. Lett. 59, 1 (2005) [DOI: 10.1016/j.matlet.2004.04. 008].
  17. M. Cardona, M. Weinstein, and G. A. Wolff, Phys. Rev. 140, A 633 (1965). https://doi.org/10.1103/PhysRev.140.A633
  18. K. Senthil, D. Mangalaraj, Sa. K. Narayandass, and S. Adachi, Mater. Sci. Eng. B 78, 53 (2000). https://doi.org/10.1016/S0921-5107(00)00510-9
  19. M. Sridharan, Sa. K. Narayandass, D. Mangalaraj, and H. C. Lee, Cryst. Res. Technol. 37, 964 (2002). https://doi.org/10.1002/1521-4079(200209)37:9<964::AID-CRAT964>3.0.CO;2-R
  20. J.-H. Qiu, P. Zhou, X.-Y. Gao, J.-N. Yu, S.-Y. Wang, J. Li, Y.-X. Zheng, Y.-M. Yang, Q.-H. Song, and L.-Y. Chen, J. Korean Phys. Soc. 46, S269 (2005).
  21. Z. G. Hu, Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu, Phys. Lett. A 372, 4521 (2008) [DOI: 10.1016/j.physleta.2008.04.001].
  22. N. Suzuki and S. Adachi, J. Appl. Phys. 79, 2065 (1996). https://doi.org/10.1063/1.361062
  23. S. H. Wemple and M. DiDomenico, Jr., Phys. Rev. B 3, 1338 (1971). https://doi.org/10.1103/PhysRevB.3.1338
  24. W.-D. Park, Trans. Electr. Electron. Mater. 11, 170 (2010) [DOI: 10.4313/TEEM.2010.11.4.170].
  25. A. A. M. Farag and I. S. Yahia, Opt. Commun. 283, 4310 (2010) [DOI: 10.1016/j.optcom.2010.06.081].
  26. L. Brus, J. Phys. Chem. 90, 2555 (1986). https://doi.org/10.1021/j100403a003
  27. J. C. Tauc, Optical Properties of Solids, North-Holland, Amsterdam, 1972.
  28. S. Ilican, M. Zor, Y. Caglar, and M. Caglar, Optica Applicata 36, 29 (2006).
  29. A. F. Qasrawi, Opt. Mater. 29, 1751 (2007) [DOI: 10.1016/j.optmat.2006.09.009].
  30. S. Mahmoud, J. Mater. Sci. 22, 251 (1987). https://doi.org/10.1007/BF01160580

피인용 문헌

  1. Electric Conduction Mechanisms Study within Zr Doped Mn3O4 Hausmannite Thin Films through an Oxidation Process in Air vol.47, pp.3, 2017, https://doi.org/10.9729/AM.2017.47.3.131
  2. In situ variations of carrier decay and proton induced luminescence characteristics in polycrystalline CdS vol.115, pp.24, 2014, https://doi.org/10.1063/1.4885757
  3. In situ variations of the scintillation characteristics in GaN and CdS layers under irradiation by 1.6 MeV protons vol.365, 2015, https://doi.org/10.1016/j.nimb.2015.07.015
  4. Microstructure and optical dispersion characterization of nanocomposite sol–gel TiO2–SiO2 thin films with different compositions vol.145, 2015, https://doi.org/10.1016/j.saa.2015.02.110
  5. Illumination effect on the structural and optical properties of nano meso nickel (II) tetraphenyl-21H, 23H-porphyrin films induces new two hours photo bleached optical sensor vol.194, 2018, https://doi.org/10.1016/j.jlumin.2017.10.070
  6. Nanostructuring for enhanced absorption and carrier collection in CZTS-based solar cells: Coupled optical and electrical modeling vol.54, 2016, https://doi.org/10.1016/j.optmat.2016.02.021
  7. Aging effect on the structure and optical properties of nano Cu 2 S films vol.7, 2017, https://doi.org/10.1016/j.rinp.2017.02.029
  8. Physical aging effects on the structural and optical properties of nano As-Se-Tl films vol.449, 2016, https://doi.org/10.1016/j.jnoncrysol.2016.07.012
  9. The effect of long term aging on the structural and optical properties of nano metallo-tetraphenylporphine films vol.26, pp.8, 2015, https://doi.org/10.1007/s10854-015-3017-0
  10. Optimization of Plasmon-Enhanced Thin-Film Heterojunction Solar Cells vol.51, pp.3, 2015, https://doi.org/10.1109/TMAG.2014.2361272
  11. In Situ Localized Surface Plasmon Resonance (LSPR) Spectroscopy to Investigate Kinetics of Chemical Bath Deposition of CdS Thin Films vol.119, pp.9, 2015, https://doi.org/10.1021/jp512738b
  12. Influence of mole concentration on the optical properties of nebulized spray coated CeO2 thin films vol.44, pp.3, 2015, https://doi.org/10.1007/s12596-015-0265-6
  13. Influence of deposition parameters on the structural and optical properties of CdS thin films obtained by micro-controlled SILAR deposition vol.77, 2015, https://doi.org/10.1016/j.jpcs.2014.09.008
  14. Absorption edge shift, optical conductivity, and energy loss function of nano thermal-evaporated N-type anatase TiO2 films vol.122, pp.8, 2016, https://doi.org/10.1007/s00339-016-0302-6
  15. Optical and Dispersion Analysis of Zinc Selenide Thin Film vol.3, pp.6, 2016, https://doi.org/10.1016/j.matpr.2016.04.055
  16. Optical and structural constants of CdS thin films grown by electron beam vacuum evaporation for solar cells vol.638, 2017, https://doi.org/10.1016/j.tsf.2017.07.048
  17. Role of intermediate metallic sub-layers in improving the efficiency of kesterite solar cells: concept and optimization vol.5, pp.3, 2018, https://doi.org/10.1088/2053-1591/aab7ae