DOI QR코드

DOI QR Code

Effects of Maturity Stages on the Nutritive Composition and Silage Quality of Whole Crop Wheat

  • Xie, Z.L. (Department of Grassland Science, South China Agricultural University) ;
  • Zhang, T.F. (Department of Grassland Science, South China Agricultural University) ;
  • Chen, X.Z. (Department of Grassland Science, South China Agricultural University) ;
  • Li, G.D. (Department of Grassland Science, South China Agricultural University) ;
  • Zhang, J.G. (Department of Grassland Science, South China Agricultural University)
  • Received : 2012.02.13
  • Accepted : 2012.05.15
  • Published : 2012.10.01

Abstract

The changes in yields and nutritive composition of whole crop wheat (Triticum aestivum L.) during maturation and effects of maturity stage and lactic acid bacteria (LAB) inoculants on the fermentation quality and aerobic stability were investigated under laboratory conditions. Whole crop wheat harvested at three maturation stages: flowering stage, milk stage and dough stage. Two strains of LAB (Lactobacillus plantarum: LAB1, Lactobacillus parafarraqinis: LAB2) were inoculated for wheat ensiling at $1.0{\times}10^5$ colony forming units per gram of fresh forage. The results indicated that wheat had higher dry matter yields at the milk and dough stages. The highest water-soluble carbohydrates content, crude protein yields and relative feed value of wheat were obtained at the milk stage, while contents of crude fiber, neutral detergent fiber and acid detergent fiber were the lowest, compared to the flowering and dough stages. Lactic acid contents of wheat silage significantly decreased with maturity. Inoculating homofermentative LAB1 markedly reduced pH values and ammonia-nitrogen ($NH_3$-N) content (p<0.05) of silages at three maturity stages compared with their corresponding controls. Inoculating heterofermentative LAB2 did not significantly influence pH values, whereas it notably lowered lactic acid and $NH_3$-N content (p<0.05) and effectively improved the aerobic stability of silages. In conclusion, considering both yields and nutritive value, whole crop wheat as forage should be harvested at the milk stage. Inoculating LAB1 improved the fermentation quality, while inoculating LAB2 enhanced the aerobic stability of wheat silages at different maturity stages.

Keywords

References

  1. Adamson, A. H. and A. Reeve. 1992. Nutritional evaluation of whole-crop wheat. In: Whole-Crop Cereals (Ed. B. A. Stark and J. M. Wilkinson). Chalcombe Publications, Aberystwyth, UK. pp. 85-96.
  2. Arieli, A. and G. Adin. 1994. Effect of wheat silage maturity on digestion and milk yield in dairy cows. J. Dairy Sci. 76:237-243.
  3. Ashbell, G. and D. Sklan. 1985. Winter wheat for silage: a double-cropping system for use in subtropical climate. Feedstuffs 57: 18-19.
  4. Ashbell, G., Z. C. Weinberg, I. Bruckental, K. Tabori and N. Sharet. 1997. Wheat silage: effect of cultivar and stage on yield and degradability in situ. J. Agric. Food Chem. 45:709-712. https://doi.org/10.1021/jf960336l
  5. Ashbell, G., Z. C. Weinberg, Y. Hen and I. Filya. 2002. The effects of temperature on the aerobic stability of wheat and corn silages. J. Ind. Microbiol. Biotechnol. 28:261-263. https://doi.org/10.1038/sj.jim.7000237
  6. Association of Self-supply Feed Evaluation. 2001. Guide book for forage evaluation. Japan Grassland Agriculture and Forage Seed Association, Tokyo. pp. 93-96.
  7. AOAC. 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemistry, Arlington, VA, USA.
  8. Filya, I., G. Ashbell, Y. Hen and Z. G. Weinberg. 2000. The effect of bacteria inoculants on fermentation and aerobic stability of whole crop wheat silage. Anim. Feed Sci. Technol. 88:39-46. https://doi.org/10.1016/S0377-8401(00)00214-5
  9. Filya, I. 2003b. Nutritive value of whole crop wheat silage harvested at three stages of maturity. Anim. Feed Sci. Technol. 103:85-95. https://doi.org/10.1016/S0377-8401(02)00284-5
  10. Gordon, F. J. 1992. Improving the feeding value of silage through biological control. In: Proceedings of the All-tech European LectureTour, Birmingham, Alltech UK. pp. 2-17.
  11. Henderson, A. R., D. R. Seale, D. H. Anderson and S. J. E. Heron. 1990. The effect of formic acid and bacterial inoculants on the fermentation and nutritive value of perennial ryegrass silage. In: Proceeding of Eurobac Conference (Ed. S. Lindgren and K. L. Petterson). Swedish University of Agricultural Sciences, Uppsala, Sweden, August 1986. pp. 93-98.
  12. Honig, H. and M. K. Woolford. 1980. Changes in silage on exposure to air. Occasional Symposium of the British Grassland Society 11:76-87.
  13. Kung, L. J. R. and N. K. Ranjit. 2001. The effect of Lactobacillus buchneri and other additives on fermentation and aerobic stability of barley silage. J. Dairy Sci. 84:1149-1155. https://doi.org/10.3168/jds.S0022-0302(01)74575-4
  14. McDonald, P., A. R. Henderson and S. J. Heron. 1991. Microorganisms. In: The Biochemistry of Silage, 2nd Ed (Ed. P. McDonald, A. R. Henderson and S. J. Heron). Chalcombe Publications, Aberystwyth. pp. 81-151.
  15. Muck, R. E. and L. J. R. Kung. 1997. Effects of silage additives ensiling. In: Silage: Field to Feedbunk (Ed. R. E. Muck and L. J. R. Kung). NRAES-99, NRAES, Ithaca, NY, USA. pp. 187-199.
  16. Murphy, R. P. 1958. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J. Sci. Food Agric. 9:714-717. https://doi.org/10.1002/jsfa.2740091104
  17. Novozamsky, I., E. R. Van, J. C. Van Schouwenburg and I. Walinga. 1974. Total nitrogen determination in plant material by means of the indophenol-blue method. Neth. J. Agric. Sci. 22:3-5.
  18. Nussio, L. G. 2005. Silage production from tropical forages. In: Proceedings of the XIVth International Silage Conference, a satellite workshop of the XXth International Grassland Congress, Belfast, Northern Ireland. pp. 97-107.
  19. Ohyama, Y., S. Hara and S. Masaki. 1977. The use of caproic acid to prevent aerobic deterioration of silage after opening, with special reference of the amounts and time of application. J. Sci. Food Agric. 28:369-374. https://doi.org/10.1002/jsfa.2740280408
  20. Oude Elferink, S. J. W. H., J. Krooneman, J. C. Gottschal, S. F. Spoelstra, F. Faber and F. Driehuis. 2001. Anaerobic conversion of lactic acid to acetic acid and 1, 2 - propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 67:125-132. https://doi.org/10.1128/AEM.67.1.125-132.2001
  21. Playne, M. J. and P. McDonald. 1966. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 17:264-268. https://doi.org/10.1002/jsfa.2740170609
  22. Rohweder, D. A., R. F. Barnes and N. Jorgensen. 1978. Proposed hay grading standards based on laboratory analyses for evaluating quality. J. Anim. Sci. 47:747-759.
  23. Spoelstra, S. F. 1991. Chemical and biological additives in forage conservation. In: Proceedings of the Conference on Forage Conservation Towards 2000 (Ed. G. Pahlow and H. Honig). Institute of Grassland and Forage Research, Braunschweig, Germany. pp. 48-70.
  24. Throop, H. L. 2005. Nitrogen deposition and herbivory affect biomass production and allocation in an annual plant. OIKOS. 111:91-100. https://doi.org/10.1111/j.0030-1299.2005.14026.x
  25. Van Soest, P. J., J. B. Robertsom and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  26. Wan, L. Q., X. L. Li, X. P. Zhang and F. He. 2007. The effect of different water contents and additive mixtures on Medicago sativa silage. Acta Pratacul. Sin. 2:40-45.
  27. Weinberg, Z. G., G. Ashbell and A. Azrieli. 1988. The effect of applying lactic acid bacteria at ensilage on the chemical and microbiological composition of vetch, wheat, and alfalfa silages. J. Appl. Microbiol. 64:1-7. https://doi.org/10.1111/j.1365-2672.1988.tb02423.x
  28. Weinberg, Z. G., G. Ashbell, Y. Hen and Z. Harduf. 1991. Ensiling whole wheat for ruminant feeding at different stage of maturity. Anim. Feed Sci. Technol. 32:313-320. https://doi.org/10.1016/0377-8401(91)90035-Q
  29. Weinberg, Z. G., G. Ashbell, Y. Hen and A. Arieli. 1993a. The effect of applying lactic acid bacteria at ensiling on the aerobic stability of silages. J. Appl. Microbiol. 75:512-518. https://doi.org/10.1111/j.1365-2672.1993.tb01588.x
  30. Weinberg, Z. G., G. Ashbell, A. Arieli and I. Brukental. 1993b. Ensiling peas, ryegrass, and wheat with additives of lactic acid bacteria (LAB) and cell wall degrading enzymes. Grass Forage Sci. 48:70-78. https://doi.org/10.1111/j.1365-2494.1993.tb01838.x
  31. Weinberg, Z. G., R. E. Muck and P. J. Weimer. 2003. The survival of silage inoculants lactic acid bacteria in rumen fluid. J. Appl. Microbiol. 94:1066-1071. https://doi.org/10.1046/j.1365-2672.2003.01942.x
  32. Weinberg, Z. G., P. Khanal, C. Yildiz, Y. Chen and A. Arieli. 2010. Effects of stage of maturity at harvest, wilting and LAB inoculants on aerobic stability of wheat silages. Anim. Feed Sci. Technol. 158:29-35. https://doi.org/10.1016/j.anifeedsci.2010.03.006
  33. Woolford, M. K. 1990. The detrimental effects of air on silage. J. Appl. Microbiol. 68:101-116. https://doi.org/10.1111/j.1365-2672.1990.tb02554.x
  34. hang, J. G. 2002. Roles of biological additives in silage production and utilization. Res. Adv. Food Sci. 3:37-46.
  35. Zhang, J. G., X. D. Liu, Z. Z. Cao, Z. Yu and Y. G. Lu. 2008. Current status and perspectives of research and utilization of forage rice. Acta Pratacul. Sin. 5:151-155.

Cited by

  1. Natural Lactic Acid Bacteria Population and Silage Fermentation of Whole-crop Wheat vol.28, pp.8, 2015, https://doi.org/10.5713/ajas.14.0955
  2. Effects of lines and inoculants on nutritive value and production costs of triticale silages vol.45, pp.7, 2016, https://doi.org/10.1590/S1806-92902016000700001
  3. Effects of inoculation with homolactic bacteria on the conservation of wheat silage stored in bunker-silos pp.1828-051X, 2017, https://doi.org/10.1080/1828051X.2017.1345664
  4. In vitro and in vivo evaluation of kenaf (Hibiscus cannabinus L.) as a roughage source for beef cattle vol.31, pp.10, 2018, https://doi.org/10.5713/ajas.17.0871
  5. Wilting whole crop black oat with glyphosate for ensiling: effects on nutritive, fermentative, and aerobic stability characteristics vol.47, pp.0, 2018, https://doi.org/10.1590/rbz4720170142
  6. Chemical, physical and biological changes of white oat ensiled with different additives vol.19, pp.1, 2018, https://doi.org/10.1590/s1519-99402018000100001
  7. Productivity and quality of whole crop rice varieties in relation to plant components vol.66, pp.1, 2012, https://doi.org/10.1111/grs.12255
  8. Comparison of Forage Quality, Productivity and β-carotene Content according to Maturity of Forage Rye (Secale cereale L.) vol.40, pp.3, 2020, https://doi.org/10.5333/kgfs.2020.40.3.123
  9. Quantitative Determination of Phenolic Acids and Flavonoids in Fresh Whole Crop Rice, Silage, and Hay at Different Harvest Periods vol.10, pp.22, 2020, https://doi.org/10.3390/app10227981
  10. Effect of maturity and storage duration on plantain (Plantago lanceolata) silage quality vol.306, pp.None, 2012, https://doi.org/10.1051/e3sconf/202130601039
  11. Use of near-infrared spectroscopy and multivariate approach for estimating silage fermentation quality from freshly harvested maize vol.20, pp.1, 2012, https://doi.org/10.1080/1828051x.2021.1918028
  12. Cover crops can produce livestock forage in Chinese subtropical regions vol.113, pp.2, 2012, https://doi.org/10.1002/agj2.20619
  13. Evaluation of Nutritive Values through Comparison of Forage Yield and Silage Quality of Mono-Cropped and Intercropped Maize-Soybean Harvested at Two Maturity Stages vol.11, pp.5, 2012, https://doi.org/10.3390/agriculture11050452
  14. Silage Fermentation: A Potential Microbial Approach for the Forage Utilization of Cyperus esculentus L. By-Product vol.7, pp.4, 2012, https://doi.org/10.3390/fermentation7040273