References
- Applegate, T. J., V. Klose, T. Steiner, A. Ganner and G. Schatzmayr. 2010. Probiotics and phytogenics for poultry: Myth or reality? J. Appl. Poult. Res. 19:194-210. https://doi.org/10.3382/japr.2010-00168
- Awad, W. A., K. Chareeb, S. Abdel-Raheem and J. Bohm. 2009. Effects of dietary inclusion of probiotic and symbiotic on growth performance, organ weight and intestinal histomorphology of broiler chickens. Poult Sci. 88:49-56. https://doi.org/10.3382/ps.2008-00244
- Awad, W. A., J. Bohm, E. Razzazi-Fazeli, K. Ghareeb and J. Zentek. 2006. Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poult. Sci. 85:974-979. https://doi.org/10.1093/ps/85.6.974
- Azzam, M. M. M., X. T. Zou, X. Y. Dong and P. Xie. 2011. Effect of supplemental L-threonine on mucin 2 gene expression and intestine mucosal immune and digestive enzymes activities of laying hens in environments with high temperature and humidity. Poult. Sci. 90:2251-2256. https://doi.org/10.3382/ps.2011-01574
- Bansal, G. R., V. P. Singh and N. Sachan. 2011. Effect of probiotic supplementation on performance of broilers. Asian J. Anim. Sci. 5:277-284. https://doi.org/10.3923/ajas.2011.277.284
- Baurhoo, B., P. R. Ferket and X. Zhao. 2009. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poult. Sci. 88:2262-2272. https://doi.org/10.3382/ps.2008-00562
- Burkholder, K. M., K. L. Thompson, M. E. Einstein, T. J. Applegate and J. A. Patterson. 2008. Influence of stressors on normal intestinal microbiota, intestinal morphology and susceptibility to Salmonella enteritidis colonization in broilers. Poult. Sci. 87:1734-1741. https://doi.org/10.3382/ps.2008-00107
- Caballero-Franco, C., K. Keller, C. De Simone and K. Chadee. 2006. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 292:315-322. https://doi.org/10.1152/ajpgi.00265.2006
- Chen, K. L., W. L. Kho, S. H. You, R. H. Yeh, S. W. Tang and C. W. Hsieh. 2009. Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae mixed fermented feed on the enhanced growth performance of broilers. Poult. Sci. 88:309-315. https://doi.org/10.3382/ps.2008-00224
- Chichlowski, M., W. J. Croom, F. W. Edens, B. W. McBride, R. Qiu, C. C. Chiang, L. R. Daniel, G. B. Havenstein and M. D. Koci. 2007. Microarchitecture and spatial relationship between bacteria and ileal, cecal and colonic epithelium in chicks fed a direct-fed microbial, Primalac, and Salinomycin. Poult. Sci. 86:1121-1132. https://doi.org/10.1093/ps/86.6.1121
- Dalloul, R. A., H. S. Lillehoj, T. A. Shellem and J. A. Doerr. 2003. Enhanced mucosal immunity against Eimeria acervulina in broilers fed a Lactobacillus-based probiotic. Poult. Sci. 82:62-66. https://doi.org/10.1093/ps/82.1.62
- Deplancke, B. and H. R. Gaskins. 2001. Microbial modulation of innate defense: Goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr. 73:1131-1141.
- Dharmani, P., V. Srivastava, V. Kissoon-Singh and K. Chadee. 2008. Role of Intestinal mucins in Innate host defense mechanisms against pathogens. J. Innate Immun. 8:123-135.
- Flint, J. F. and M. R. Garner. 2009. Feeding beneficial bacteria: A natural solution for increasing efficiency and decreasing pathogens in animal agriculture. J. Appl. Poult. Res. 18:367-378. https://doi.org/10.3382/japr.2008-00133
- Forder, R. E. A., G. S. Howarth, D. R. Tivey and R. J. Hughes. 2007. Bacterial modulation of small intestinal goblet cells and mucin composition during early post-hatch development of poultry. Poult. Sci. 86:2396-2403. https://doi.org/10.3382/ps.2007-00222
- Geyra, A., Z. Uni and D. Sklan. 2001. Enterocyte dynamics and mucosal development in the post-hatch chick. Poult. Sci. 80:776-782. https://doi.org/10.1093/ps/80.6.776
- Girish. C. K. and T. K. Smith. 2008. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on small intestinal morphology of turkeys. Poult. Sci. 87:1075-1082. https://doi.org/10.3382/ps.2007-00379
- Horn, N. L., S. S. Donkin, T. J. Applegate and O. Adeola. 2009. Intestinal mucin dynamics: response of broiler chicks and white pekin ducklings to dietary threonine. Poult. Sci. 88:1906-1914. https://doi.org/10.3382/ps.2009-00009
-
Iwashita, J., S. Yukita, S. Hiroko, T. Nagatomo, S. Hiroshi and A. Tatsuya. 2003. mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-
$\alpha$ through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunol. Cell Biol. 81:275-282. https://doi.org/10.1046/j.1440-1711.2003.t01-1-01163.x - Kabir, S. M. L. 2009. The role of probiotics in the poultry industry. Int. J. Mol. Sci. 10:3531-3546. https://doi.org/10.3390/ijms10083531
- Karimi-Torshizi, M. A., S. Rahimi, N. Mojgani, S. Esmaeilkhanian and J. L. Grimes. 2008. Screening of indigenous strains of lactic acid bacteria for development of a probiotic for poultry. Asian-Aust. J. Anim. Sci. 21:1495-1500. https://doi.org/10.5713/ajas.2008.80081
- Leuschner, R. G. K. and J. Bew. 2003. Enumeration of probiotic bacilli spores in animal feed: interlaboratory study. J. AOAC Int. 86:568-575.
- Liu, T., R. She, K. Wang, H. Bao, Y. Zhang, D. Luo, Y. Hu, Y. Ding, D. Wang and K. Peng. 2008. Effects of rabbit Sacculusrotundus antimicrobial peptides on the intestinal mucosal immunity in chickens. Poult. Sci. 87:250-254. https://doi.org/10.3382/ps.2007-00353
-
Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real- time quantitative PCR and
$2^{-{\Delta}{\Delta}ct}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262 - Mack, D. R., S. Michail, S. Wei, L. McDougall and M. A. Hollingsworth. 1999. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol. 276:941-950.
- Mattar, A. F., H. Daniel, R. A. Teitelbaum, F. Drongowski, C. M. Yongy, Harmon and A. G. Coran. 2002. Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr. Surg. Int. 18:586-590. https://doi.org/10.1007/s00383-002-0855-7
- Mountzouris, K. C., P. Tsitrsikos, I. Palamidi, A. Arvaniti, M. Mohnl. G. Schatzmayr and K. Fegeros. 2010. Effect of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult. Sci. 89:58-67. https://doi.org/10.3382/ps.2009-00308
- National Research Council. 1994. Nutrient requirements of poultry, 8th ed. Natl. Acad. Press. Washington, DC, USA.
- O'Dea, E. E., G. M. Fasenko, G. E. Allison, D. R. Korver, G. W. Tannock and L. L. Guan. 2006. Investigating the effects of commercial probiotics on broiler chick quality and production efficiency. Poult. Sci. 85:1855-1863. https://doi.org/10.1093/ps/85.10.1855
- Ohh, S. J. 2011. Meta-analysis to draw the appropriate regimen of enzyme and probiotic supplementation to pigs and chicken diets. Asian-Aust. J. Anim. Sci. 24:573-586. https://doi.org/10.5713/ajas.2011.r.06
-
Onderci, M., N. Sahin, G. Cikim, A. ydyn and I. Ozercan. 2008.
$\alpha$ -glucanase-producing bacterial culture improves performance and nutrient utilization and alters gut morphology of broilers fed a barley-based diet. Anim. Feed Sci. Technol. 146:87-97. https://doi.org/10.1016/j.anifeedsci.2007.11.005 - Rahimi, S., J. L. Grimes, O. Fletcher, E. Oviedo and B. W. Sheldon. 2010. Effect of a direct-fed microbial (Primalac) on structure and ultrastructure of small intestine in turkey poults. Poult. Sci. 88:491-503.
- SAS Institute. 2003. SAS user's guide. Version 9.1 ed. SAS Institute Inc., Cary, NC, USA.
- Smirnov, A., D. Sklan and Z. Uni. 2004. Mucin dynamics in the chick small intestine are altered by starvation. J. Nutr. 134:736-742.
- Smirnov, A., R. Perez, E. Amit-Romach, D. Sklan and Z. Uni. 2005. Mucin dynamics and microbial population in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation. J. Nutr. 135:187-192.
- Tanabe, H., K. Sugiyama, T. Matsuda, S. Kiriyama and T. Morita. 2005. Small intestinal mucins are secreted in proportion to the settling volume in water of dietary indigestible components in rats. J. Nutr. 135:2431-2437.
- Tellez, G., S. E. Higgins, A. M. Donoghue and B. M. Hargis. 2006. Digestive physiology and the role of microorganisms. J. Appl. Poult. Res. 15:136-144. https://doi.org/10.1093/japr/15.1.136
- Thompson, K. L. and T. J. Applegate. 2006. Feed withdrawal alters small intestinal morphology and mucus of broilers. Poult. Sci. 85:1535-1540. https://doi.org/10.1093/ps/85.9.1535
- Timmerman, H. M., A. Veldman, E. van den Elsen, F. M. Rombouts and A. C. Beynen. 2006. Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics. Poult. Sci. 85:1383-1388. https://doi.org/10.1093/ps/85.8.1383
- Uni, Z., A. Smirnov and D. Sklan. 2003. Pre- and post-hatch development of goblet cells in the broiler small intestine: effect of delayed access to feed. Poult. Sci. 82:320-327. https://doi.org/10.1093/ps/82.2.320
- Vila, B., A. Fontgibell, I. Badiola, E. Esteve-Garcia, G. Jiménez, M. Castillo and J. Brufau. 2009. Reduction of Salmonella entericavar. Enteritidis colonization and invasion by Bacillus cereus var. toyoi inclusion in poultry feeds. Poult. Sci. 88:975-979. https://doi.org/10.3382/ps.2008-00483
- Willis, W. L. and L. Reid. 2008. Investigating the effects of dietary probiotic feeding regimens on broiler chicken production and Campylobacter jejuni presence. Poult. Sci. 87:606-611. https://doi.org/10.3382/ps.2006-00458
- Zhou, X., Y. Wang, Q. Gu and W. Li. 2010. Effect of dietary probiotic, Bacillus coagulans, on growth performance, chemical composition, and meat quality of Guangxi Yellow chicken. Poult. Sci. 89:588-593. https://doi.org/10.3382/ps.2009-00319
Cited by
- Effect of Dietary Live or Killed Kimchi Lactic Acid Bacteria on Growth Performance, Nutrient Utilization, Gut Microbiota and Meat Characteristics in Broiler Chicken vol.40, pp.1, 2013, https://doi.org/10.5536/KJPS.2013.40.1.057
- Effects of <i>Bacillus subtilis</i> KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets vol.27, pp.8, 2014, https://doi.org/10.5713/ajas.2013.13737
- Effects of Bacillus subtilis, Kefir and β-Glucan Supplementation on Growth Performance, Blood Characteristics, Meat Quality and Intestine Microbiota in Broilers vol.43, pp.3, 2016, https://doi.org/10.5536/KJPS.2016.43.3.159
- Probiotic level effects on growth performance, carcass traits, blood parameters, cecal microbiota, and immune response of broilers vol.88, pp.2, 2016, https://doi.org/10.1590/0001-3765201620150071
- and its application to goose feed vol.4, pp.10, 2017, https://doi.org/10.1098/rsos.171012
- Effects of Bacillus amyloliquefaciens LFB112 in the diet on growth of broilers and on the quality and fatty acid composition of broiler meat vol.57, pp.9, 2017, https://doi.org/10.1071/AN16119
- and the intestinal microbiota vol.58, pp.4, 2017, https://doi.org/10.1080/00071668.2017.1307322
- The Effects of Direct-fed Microbial Supplementation, as an Alternative to Antibiotics, on Growth Performance, Intestinal Immune Status, and Epithelial Barrier Gene Expression in Broiler Chickens vol.9, pp.4, 2017, https://doi.org/10.1007/s12602-017-9275-9
- At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota vol.13, pp.3, 2018, https://doi.org/10.1371/journal.pone.0194825
- Effects of dietary Bacillus amyloliquefaciens supplementation on growth performance, intestinal morphology, inflammatory response, and microbiota of intra-uterine growth retarded weanling piglets vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0236-2
- Short-term toxicity of dibutyl phthalate to mice intestinal tissue pp.1477-0393, 2018, https://doi.org/10.1177/0748233718807303
- Probiotics and plant-derived compounds as eco-friendly agents to inhibit microbial toxins in poultry feed: a comprehensive review pp.1614-7499, 2018, https://doi.org/10.1007/s11356-018-3197-2
- -induced necrotic enteritis and growth performance in broilers vol.102, pp.5, 2018, https://doi.org/10.1111/jpn.12937
- as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry vol.47, pp.4, 2018, https://doi.org/10.1080/03079457.2018.1464117
- Effect of Dietary Supplementation of Zinc and Multi-Microbe Probiotic on Growth Traits and Alteration of Intestinal Architecture in Broiler pp.1867-1314, 2018, https://doi.org/10.1007/s12602-018-9424-9
- The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition vol.25, pp.11, 2018, https://doi.org/10.1007/s11356-018-1687-x
- 유용 미생물 첨가가 육계 생산성, 맹장 내 균총 및 유해가스 발생량에 미치는 영향 vol.41, pp.4, 2012, https://doi.org/10.5536/kjps.2014.41.4.227
- Lactobacillus plantarum 첨가 고추장의 C57BL/6 마우스에서 대장염 예방 증진효과 vol.24, pp.8, 2012, https://doi.org/10.11002/kjfp.2017.24.8.1188
- The Difference in the Mucus Organization Between the Small and Large Intestine and Its Protection of Selected Natural Substances. A Review vol.62, pp.4, 2012, https://doi.org/10.2478/fv-2018-0037
- Effect of Probiotic Saccharomyces spp. on Duck Egg Quality Characteristics and Mineral and Cholesterol Concentrations in Eggshells and Yolks vol.18, pp.11, 2012, https://doi.org/10.3923/pjn.2019.1075.1083
- In vitro assessment of immunomodulatory and anti-Campylobacter activities of probiotic lactobacilli vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-54494-3
- Improved utilization of soybean meal through fermentation with commensal Shewanella sp. MR-7 in turbot (Scophthalmus maximus L.) vol.18, pp.None, 2019, https://doi.org/10.1186/s12934-019-1265-z
- The potential for inoculating Lactobacillus animalis and Enterococcus faecium alone or in combination using commercial in ovo technology without negatively impacting hatch and post-hatch performance vol.98, pp.12, 2012, https://doi.org/10.3382/ps/pez441
- Novel Strategies for Efficient Production and Delivery of Live Biotherapeutics and Biotechnological Uses of Lactococcus lactis : The Lactic Acid Bacterium Model vol.8, pp.None, 2012, https://doi.org/10.3389/fbioe.2020.517166
- Dietary Supplementation With Bacillus subtilis Direct-Fed Microbials Alters Chicken Intestinal Metabolite Levels vol.7, pp.None, 2012, https://doi.org/10.3389/fvets.2020.00123
- Probiotics, Prebiotics, Synbiotics, and Paraprobiotics as a Therapeutic Alternative for Intestinal Mucositis vol.11, pp.None, 2012, https://doi.org/10.3389/fmicb.2020.544490
- Detection of Lactic Acid Bacteria (LAB) from Local Breed Chicken Gut as Probiotic Agent in Livestock vol.19, pp.4, 2012, https://doi.org/10.3923/pjn.2020.197.203
- Cecal microbiome composition and metabolic function in probiotic treated broilers vol.15, pp.6, 2012, https://doi.org/10.1371/journal.pone.0225921
- Effect of Fermented Cow and Soymilk as Probiotic on Energy Metabolism and Nutrient Retention in Broiler Chicken vol.19, pp.6, 2012, https://doi.org/10.3923/ijps.2020.277.281
- The Gut Microbiota of Laying Hens and Its Manipulation with Prebiotics and Probiotics To Enhance Gut Health and Food Safety vol.86, pp.13, 2020, https://doi.org/10.1128/aem.00600-20
- Supplementing neonatal Jersey calves with a blend of probiotic bacteria improves the pathophysiological response to an oral Salmonella enterica serotype Typhimurium challenge vol.103, pp.8, 2012, https://doi.org/10.3168/jds.2019-17480
- Effects of fermented feeds and ginseng polysaccharides on the intestinal morphology and microbiota composition of Xuefeng black-bone chicken vol.15, pp.8, 2020, https://doi.org/10.1371/journal.pone.0237357
- Effect of multienzymes + probiotic supplementation in fermented shea butter cake based diets on the carcass traits and the biochemistry of broiler chickens vol.12, pp.3, 2012, https://doi.org/10.15547/ast.2020.03.036
- Intestinal Anti-Inflammatory Improvement with Fenugreek Seeds as A prebiotic and Synbiotic with Lactobacillus acidophilus in Rats Experimentally Infected with Escherichia coli vol.44, pp.2, 2012, https://doi.org/10.30539/ijvm.v44i2.984
- Effects of microbial fermented sesame meal and enzyme supplementation on the intestinal morphology, microbiota, pH, tibia bone and blood parameters of broiler chicks vol.19, pp.1, 2012, https://doi.org/10.1080/1828051x.2020.1755378
- The Response of Broiler Chicks to Dietary Supplementation with a Probiotic, Acidifiers Blend, and Their Combination vol.23, pp.4, 2012, https://doi.org/10.1590/1806-9061-2021-1511
- Antimicrobial peptides as an additive in broiler chicken nutrition: a meta-analysis of bird performance, nutrient digestibility and serum metabolites vol.30, pp.2, 2012, https://doi.org/10.22358/jafs/136400/2021
- Positive Influence of a Probiotic Mixture on the Intestinal Morphology and Microbiota of Farmed Guinea Fowls (Numida meleagris) vol.8, pp.None, 2012, https://doi.org/10.3389/fvets.2021.743899
- Probiotics Bacillus licheniformis Improves Intestinal Health of Subclinical Necrotic Enteritis-Challenged Broilers vol.12, pp.None, 2012, https://doi.org/10.3389/fmicb.2021.623739
- Probiotics: an Antibiotic Replacement Strategy for Healthy Broilers and Productive Rearing vol.13, pp.1, 2012, https://doi.org/10.1007/s12602-020-09640-z
- Modulation of Morphology and Glycan Composition of Mucins in Farmed Guinea Fowl (Numida meleagris) Intestine by the Multi-Strain Probiotic Slab51® vol.11, pp.2, 2012, https://doi.org/10.3390/ani11020495
- A Newly Developed Synbiotic Yogurt Prevents Diabetes by Improving the Microbiome-Intestine-Pancreas Axis vol.22, pp.4, 2012, https://doi.org/10.3390/ijms22041647
- Effects of novel probiotic strains of Bacillus pumilus and Bacillus subtilis on production, gut health, and immunity of broiler chickens raised under suboptimal conditions vol.100, pp.3, 2012, https://doi.org/10.1016/j.psj.2020.11.048
- Supplementation of postbiotic RI11 improves antioxidant enzyme activity, upregulated gut barrier genes, and reduced cytokine, acute phase protein, and heat shock protein 70 gene expression levels in h vol.100, pp.3, 2021, https://doi.org/10.1016/j.psj.2020.12.011
- Antilisterial Potential of Lactic Acid Bacteria in Eliminating Listeria monocytogenes in Host and Ready-to-Eat Food Application vol.12, pp.1, 2021, https://doi.org/10.3390/microbiolres12010017
- Bacillus Subtilis 29784 as a Feed Additive for Broilers Shifts the Intestinal Microbial Composition and Supports the Production of Hypoxanthine and Nicotinic Acid vol.11, pp.5, 2012, https://doi.org/10.3390/ani11051335
- Probiotics, Photobiomodulation, and Disease Management: Controversies and Challenges vol.22, pp.9, 2021, https://doi.org/10.3390/ijms22094942
- Bacteriocinogenic Bacillus spp. Isolated from Korean Fermented Cabbage (Kimchi)-Beneficial or Hazardous? vol.7, pp.2, 2012, https://doi.org/10.3390/fermentation7020056
- A Review of the Effects and Production of Spore-Forming Probiotics for Poultry vol.11, pp.7, 2012, https://doi.org/10.3390/ani11071941
- Assessment of Intestinal Immunity and Permeability of Broilers on Partial Replacement Diets of Two-Stage Fermented Soybean Meal by Bacillus velezensis and Lactobacillus brevis ATCC 367 vol.11, pp.8, 2012, https://doi.org/10.3390/ani11082336
- Effect of the use of probiotic Bacillus subtilis (QST 713) as a growth promoter in broilers: an alternative to bacitracin methylene disalicylate vol.100, pp.9, 2012, https://doi.org/10.1016/j.psj.2021.101372
- Growth, Chemical Composition, Histology and Antioxidant Genes of Atlantic Salmon (Salmo salar) Fed Whole or Pre-Processed Nannochloropsis oceanica and Tetraselmis sp. vol.6, pp.3, 2021, https://doi.org/10.3390/fishes6030023
- Dietary Clostridium butyricum and Bacillus subtilis Promote Goose Growth by Improving Intestinal Structure and Function, Antioxidative Capacity and Microbial Composition vol.11, pp.11, 2012, https://doi.org/10.3390/ani11113174
- The Application of Bacillus subtilis for Adhesion Inhibition of Pseudomonas and Preservation of Fresh Fish vol.10, pp.12, 2012, https://doi.org/10.3390/foods10123093