DOI QR코드

DOI QR Code

Effect of Population Reduction on mtDNA Diversity and Demographic History of Korean Cattle Populations

  • Dadi, Hailu (Department of Animal Biotechnology, Collage of Animal Bioscience and Technology, Konkuk University) ;
  • Lee, Seung-Hwan (Hanwoo Experiment Station, National Institute of Animal Science) ;
  • Jung, Kyoung-Sup (Institute of Livestock and Veterinary Research) ;
  • Choi, Jae-Won (Institute of Livestock and Veterinary Research) ;
  • Ko, Moon-Suck (Subtropical Animal Experimental Station, National Institute of Animal Science) ;
  • Han, Young-Joon (Department of Animal Science, Chungbuk National University) ;
  • Kim, Jong-Joo (School of Biotechnology, Yeungnam University) ;
  • Kim, Kwan-Suk (Department of Animal Science, Chungbuk National University)
  • Received : 2012.03.05
  • Accepted : 2012.04.26
  • Published : 2012.09.01

Abstract

The population sizes of three Korean indigenous cattle populations have been drastically reduced over the past decades. In this study, we examined the extent to which reduction in populations influenced genetic diversity, population structure and demographic history using complete mitochondrial DNA (mtDNA) control region sequences. The complete mtDNA control region was sequenced in 56 individuals from Korean Black (KB), Jeju Black (JEB) and Korean Brindle (BRI) cattle populations. We included 27 mtDNA sequences of Korean Brown (BRO) from the GenBank database. Haplotype diversity estimate for the total population was high (0.870) while nucleotide diversity was low (0.004). The KB showed considerably low nucleotide (${\pi}$ = 0.001) and haplotype (h = 0.368) diversities. Analysis of molecular variance revealed a low level of genetic differentiation but this was highly significant (p<0.001) among the cattle populations. Of the total genetic diversity, 7.6% was attributable to among cattle populations diversity and the rest (92.4%) to differences within populations. The mismatch distribution analysis and neutrality tests revealed that KB population was in genetic equilibrium or decline. Indeed, unless an appropriate breeding management practice is developed, inbreeding and genetic drift will further impoverish genetic diversity of these cattle populations. Rational breed development and conservation strategy is needed to safeguard these cattle population.

Keywords

References

  1. Amos, W. and A. Balmford. 2001. Whe genetics matter? Heredity 87:257-265. https://doi.org/10.1046/j.1365-2540.2001.00940.x
  2. Amos, W. and J. Harwood. 1998. Factors affecting levels of genetic diversity in natural populations. Phil. Trans. R. Soc. Lond. B Sci. 353:177-186. https://doi.org/10.1098/rstb.1998.0200
  3. Anderson, S., M. H. L. De Bruijn, A. R. Coulson, I. C. Eperon, F. Sanger and I. G. Young. 1982. Complete sequence of bovine mitochondrial DNA. Conserved Features of the Mammalian Mitochondrial Genome. J. Mo. Bio. 156:683-717. https://doi.org/10.1016/0022-2836(82)90137-1
  4. Bazin E., S. Glemin and N. Galtier. 2006. Population size does not influence mitochondrial genetic diversity in animals. Science 312:570-572. https://doi.org/10.1126/science.1122033
  5. Bradley, D. G., D. E. MacHugh, P. Cunningham and R. T. Loftus. 1996. Mitochondrial diversity and the origins of African and European cattle. Proc. Natl. Acad. Sci. USA. 93:5131-5135. https://doi.org/10.1073/pnas.93.10.5131
  6. Cherry, J. L. and J. Wakeley. 2003. A diffusion approximation for selection and drift in a subdivided population. Genetics 163: 421-428.
  7. Choi, T. J. 2009. Establishment of phylogenomic characteristics for Korean traditional cattle breeds (Hanwoo, Korean brindle and black). Master Thesis. Jeon-buk National University, Korea.
  8. Excoffier, L., G. Laval and S. Schneider. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1:47-50.
  9. Excoffier, L., P. Smouse and J. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479-491.
  10. Falconer, D. S. and T. F. C. Mackay. 1997. Introduction to quantitative genetics. 4th Edition. Longman limited.
  11. FAO (Food and Agriculture organization). 2009. Framework study on food security and access and benefit-sharing for genetic resources for food and agriculture. Background study paper No 42. September 2009.
  12. Frankham, R., J. D. Ballou and D. A. Briscoe. 2002. Introduction to conservation genetics. In book 2002 Cambridge University Press.
  13. Frankham, R., K. Lees, M. E. Montgomery, P. R. England, E. H. Lowe and D. A. Briscoe. 1999. Do population size bottlenecks reduce evolutionary potential? Anim. Conserv. 2:255-260. https://doi.org/10.1111/j.1469-1795.1999.tb00071.x
  14. Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915-925.
  15. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95-98.
  16. Han, S. W. 1996. The breed of cattle. Sun-Jin publishing. Korea.
  17. Hedrick, P. 2005. Large variance in reproductive success and the Ne/N ratio. Evolution 59:1596-1599. https://doi.org/10.1111/j.0014-3820.2005.tb01809.x
  18. Hoelzel, A. R., J. Halley, S. J. O'Brien, C. Campagna, T. Arnbom, B. Le Boeuf, K. Ralls and G. A. Dover. 1993. Elephant seal genetic variation and the use of simulation models to investigate historical bottlenecks. J. Hered. 84:443-449.
  19. Lande, R. 1988. Genetics and demography in biological conservation. Science 241:1455-1459. https://doi.org/10.1126/science.3420403
  20. Lee, C. and E. J. Pollak. 2002. Genetic antagonism between body weight and milk production in beef cattle. J. Anim. Sci. 80: 316-321.
  21. Loftus, R. T., D. E. MacHugh, D. G. Bradley, P. M. Sharp and P. Cunningham. 1994. Evidence for two independent domestications of cattle. Proc. Natl. Acad. Sci. USA. 91:2757-2761. https://doi.org/10.1073/pnas.91.7.2757
  22. O'Brien, S. and J. Evermann. 1989. Interactive influence of infectious disease and genetic diversity in natural populations. Trends Ecol. Evol. 3:254-259.
  23. O'Brien, S. J. 1994. A role for molecular genetics in biological conservation. Proc. Natl. Acad. Sci. USA. 91:5748-5755. https://doi.org/10.1073/pnas.91.13.5748
  24. Rogers, A. R. and H. Harpending. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9:552-569.
  25. Rozas, J., J. C. Sánchez-DelBarrio, X. Messeguer and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496-2497. https://doi.org/10.1093/bioinformatics/btg359
  26. Slatkin, M. and R. R. Hudson. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555-562.
  27. Spielman, D., B. W. Brook and R. Frankham. 2004. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. USA. 101:15261-15264. https://doi.org/10.1073/pnas.0403809101
  28. Tajima, F. 1989. The effect of change in population size on DNA polymorphism. Genetics 123:597-601.
  29. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution (submitted). (Publication PDF at http://www.kumarlab.net/publications).
  30. Thompson J. D., D. G. Higgins and T. J. Gibson. 1994. CLUSTAL-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  31. Weber, S. D., S. Brent, J. Carlos Garza and N. Lehman. 2000. An empirical genetic assessment of the severity of northern elephant seal population bottleneck. Curr. Biol. 10:1287-1290. https://doi.org/10.1016/S0960-9822(00)00759-4
  32. William, J., O. Ballard and M. Kreitman. 1995. Is mitochondrial DNA a strictly neutral marker? Trends Ecol. Evol. 10:485-488. https://doi.org/10.1016/S0169-5347(00)89195-8
  33. Yoon, D. H., E. W. Park, S. H. Lee, H. K. Lee, S. J. Oh, I. C. Cheong and K. C. Hong. 2005. Assessment of genetic diversity and relationships between Korean cattle and other cattle breeds by microsatellite loci. J. Anim. Sci. Technol. (Kor.) 47:341-354. https://doi.org/10.5187/JAST.2005.47.3.341

Cited by

  1. Inter- and intra-population genetic divergence of East Asian cattle populations: focusing on Korean cattle vol.36, pp.3, 2014, https://doi.org/10.1007/s13258-013-0146-9
  2. Whole-Genome Analyses of Korean Native and Holstein Cattle Breeds by Massively Parallel Sequencing vol.9, pp.7, 2014, https://doi.org/10.1371/journal.pone.0101127
  3. Towards breed formation by island model divergence in Korean cattle vol.15, pp.1, 2015, https://doi.org/10.1186/s12862-015-0563-2
  4. Haplogroup Classification of Korean Cattle Breeds Based on Sequence Variations of mtDNA Control Region vol.29, pp.5, 2016, https://doi.org/10.5713/ajas.15.0692
  5. Genome-wide linkage disequilibrium and past effective population size in three Korean cattle breeds vol.48, pp.1, 2016, https://doi.org/10.1111/age.12488
  6. Phylogenetic analysis of Tibetan mastiffs based on mitochondrial hypervariable region I vol.96, pp.1, 2017, https://doi.org/10.1007/s12041-017-0753-3
  7. Genomic data reveal a loss of diversity in two species of tuco-tucos (genus Ctenomys ) following a volcanic eruption vol.7, pp.None, 2012, https://doi.org/10.1038/s41598-017-16430-1
  8. Signatures of positive selection underlying beef production traits in Korean cattle breeds vol.62, pp.3, 2012, https://doi.org/10.5187/jast.2020.62.3.293