DOI QR코드

DOI QR Code

Ti:LiNbO3 비대칭 Mach-Zehnder 간섭기와 분할 전극구조를 이용한 집적광학 전계센서의 감지부에 관한 연구

A Study on the Sensing Part of Integrated-Optic Electric Field Sensor Utilizing Ti:LiNbO3 Asymmetric Mach-Zehnder Interferometer and Segmented Electrode Structure

  • 정홍식 (홍익대학교 전자전기공학과) ;
  • 김영주 (홍익대학교 전자전기공학과)
  • Jung, Hong-Sik (Dept. of Electronic and Electrical Engineering, Hansung University) ;
  • Kim, Young-Ju (Dept. of Electronic and Electrical Engineering, Hansung University)
  • 투고 : 2011.12.01
  • 심사 : 2012.02.10
  • 발행 : 2012.02.29

초록

$1.3{\mu}m$ 파장에서 동작하는 비대칭 Mach-Zehnder 간섭기에 분할전극 구조를 배열하여 전계 측정시스템의 감지부를 설계, 제작하였다. BPM 전산모사를 통해서 소자를 설계하였고, $LiNbO_3$에 Ti 확산방법으로 구현된 채널 광도파로에 집중 전극구조를 배열하여 집적광학 칩을 제작하였다. ${\pi}/2$ 위상차를 갖도록 설계된 비대칭 구조에서는 DC 0V에서 측정된 출력 광세기가 최고치에 약 1//2에 해당됨을 확인하였으며, 1KHz 전기신호를 인가해서 ${\pi}/2$ 위상차 때문에 나타나는 전기적 현상들을 확인하였다.

Integrated-optic asymmetric Mach-Zehnder interferometer at $1.3{\mu}m$ wavelength and segmented electrode structure were designed and fabricated as a sensing part for the electric-field measurement system. The device was simulated based on the BPM software and fabricated utilizing Ti-diffused $LiNbO_3$ channel optical waveguides and lumped-type electrodes. Almost half-maximum power transmission was observed for asymmetric interferometers with ${\pi}/2$ intrinsic phase difference. Expected experimental measurements were observed for 1KHz electrical signal bandwidth.

키워드

참고문헌

  1. Serigne, et al, "Isotropic Pattern of an Optical Electromagnetic Field Probe Based Upon Mach-Zehnder Interferometer," IEEE Trans. on Electromagnetic Compatibility, Vol. 39, No. 1, pp. 61-63, Feb. 1997. https://doi.org/10.1109/15.554696
  2. Y. J. Rao, "Eletro-optic electric field sensor based on periodically poled $LiNbO_{3}$," Electronics Lett., Vol. 35, No. 7, pp. 596-597, Apr. 1999. https://doi.org/10.1049/el:19990374
  3. Lionel Duvillaret, et al, "Electro-optic sensors for electric field measurements. I. Theoretical comparision among different modulation techniques," J. Opt. Soc. Am. B, Vol. 19, No. 11, pp. 2692-2703, Nov. 2002. https://doi.org/10.1364/JOSAB.19.002692
  4. C. H. Bulmer and W. K. Burns, "Linear Interferometric Modulators in Ti:$LiNbO_{3}$," J. Lightwave Technol., Vol. LT-2, No. 4, pp. 512-521, Aug. 1984.
  5. Tsung-Hsin Lee, et al, "Electromagnetic Field Sensor Using Mach-Zehnder Waveguide Modulator," Microwave and Optical Technol. Lett., Vol. 48, No. 9, pp. 1897-1899, Sep. 2006. https://doi.org/10.1002/mop.21776
  6. Tsung-Hsin Lee, et al, "Integrated $LiNbO_{3}$ Electrooptical Electromagnetic Field Sensor," Microwave and Optical Technol. Lett. Vol. 49, No. 9, pp. 2312-2314, Sep. 2007. https://doi.org/10.1002/mop.22715
  7. Hiroshi Nishihara, et al, "Optical Integrated Circuits": pp. 286-289, McGraw-Hill, 1985.
  8. Gerd Keiser, Optical Fiber Communication, 4th edition, pp. 222-245, McGraw-Hill, 2010.
  9. David H. Naghski, et al, "An integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields," J. Lightwave Technol., Vol. 12, No. 6, pp. 1092-1098, June 1994. https://doi.org/10.1109/50.296204
  10. Thomas Mejer, et al, "Integrated Optical E-Field Probes with Segmented Modulator Electrodes," J. Lightwave Technol., Vol. 12, No. 8, pp. 1497-1503, Aug. 1994. https://doi.org/10.1109/50.317540
  11. Hsin-Ying Lee, et al, "Reflective type segmented electrooptical electric field sensor," Sensors and Actuators A, Vol. 148, pp. 355-358, 2008. https://doi.org/10.1016/j.sna.2008.08.013
  12. Zhang Fuwen, et al, "An Integrated Electro- Optic E-Field Sensor with Segmented Electrodes," Microwave and Optical Technology Letters, Vol. 40, No. 4, pp. 302-305, Feb. 2004. https://doi.org/10.1002/mop.11361
  13. OptiBPM 9.0 (Waveguide Optics Design Software, Optiwave.