DOI QR코드

DOI QR Code

18 방사성동위원소 피폭에 의한 금붕어(Carassius auratus)뇌의 신경전달물질 변화

Effect of 18 Irradiation on Neurotransmitters in the Brains of Goldfish Carassius auratus

  • 박남규 (부경대학교 수산과학대학 생물공학과) ;
  • 고혜진 (부경대학교 수산과학대학 생물공학과) ;
  • 김군도 (부경대학교 자연과학대학 미생물학과) ;
  • 이종규 (부경대학교 자연과학대학 물리학과) ;
  • 길상형 (양산부산대학교병원 핵의학과) ;
  • 이병우 (부경대학교 공과대학 신소재시스템공학과)
  • Park, Nam-Gyu (Department of Biotechnology, Pukyong National University) ;
  • Go, Hye-Jin (Department of Biotechnology, Pukyong National University) ;
  • Kim, Gun-Do (Department of Microbiology, Pukyong National University) ;
  • Lee, Jong-Kyu (Department of Physics, Pukyong National University) ;
  • Kil, Sang-Hyeong (Department of Nuclear Medicine, Pusan National University Yangsan Hospital) ;
  • Lee, Byung-Woo (Department of Materials System Engineering, Pukyong National University)
  • 투고 : 2012.05.23
  • 심사 : 2012.07.06
  • 발행 : 2012.08.30

초록

$^{18}F$ 방사성동위원소 피폭으로 금붕어 뇌에서 유도된 생리활성물질을 조사하기 위해 금붕어 뇌에 존재하는 신경전달물질의 생성 변화에 관한 연구를 수행하였다. $^{18}F$ 580 mCi를 납으로 밀폐된 공간에 두고 선원으로부터 4 cm 떨어진 위치에 금붕어들을 수조에 넣어 4시간 동안 노출시켰다. 거리, 노출시간 및 $^{18}F$의 반감기로부터 계산된 흡수선량은 약 2 Gy이었다. $^{18}F$에 의해 피폭된 금붕어 뇌와 피폭되지 않은 정상 금붕어의 뇌를 각각 10마리씩 절개하여 즉시 냉동 보관 하였다. 각각의 조직들은 초산으로 추출하였으며, 동결건조 후 샘플들은 증류수로 녹여 HPLC를 사용하여 물질을 정제하였다. $^{18}F$로 피폭된 금붕어와 피폭되지 않은 금붕어의 뇌에 존재하는 생리활성물질의 흡광도의 세기는 전체적으로 커다란 차이점은 없었지만, 방사선에 노출된 금붕어 뇌 추출물의 경우 13분대에 해당하는 물질 피크만이 정상 금붕어 뇌 추출물에 비해 매우 크게 증가하였다. 분석 결과, 이 물질은 트립토판(tryptophan, Trp)으로 밝혀졌다. 따라서 금붕어의 뇌에 존재하는 신경전달물질인 트립토판은 $^{18}F$ 방사성동위원소 피폭으로 금붕어 뇌에서 농도 변화가 유도된다는 것을 이 결과는 나타내고 있다.

In order to investigate the changes in bioactive materials induced in goldfish brains by $^{18}F$ irradiation, the variations in the neurotransmitter levels in the whole brain were studied. The distance between the goldfish and 580 mCi of $^{18}F$ was about 4 cm, and the exposure lasted for 4 hrs. The absorption level calculated based on the distance, exposure time, and half-life of $^{18}F$ was approximately 2 Gy. After sacrifice by $^{18}F$ irradiation or untreated conditions, ten brains were dissected or immediately frozen, respectively. The tissues were extracted in acetic acid. After lyophilization, the samples were dissolved in distilled water and were further purified on a reverse-phase HPLC column. There were no differences in the intensities of the bioactive materials between $^{18}F$-exposed goldfish and control goldfish, while the only peak corresponded to 13 min, which indicated a significant increase in the irradiated brains. Our analysis has found that this compound is tryptophan. This result suggests that $^{18}F$ leads to changes in a classical neurotransmitter, tryptophan, in both the brains of control goldfish and goldfish contaminated by irradiation.

키워드

참고문헌

  1. Cassone, M. C., Lombard, A., Rossetti, V., Urciuoli, R. and Rolfo, P. M. 1993. Effect of in vivo He-Ne laser irradiation on biogenic amine levels in rat brain. J. Photochem. Photobiol. B 18, 291-294. https://doi.org/10.1016/1011-1344(93)80078-N
  2. Deev, L. I., Topchishvili, G. I., Akhalaia, M. I. and Platonov, A. G. 1985. Effect of x-ray irradiation on the activity of key enzymes in heme biosynthesis and breakdown in the rat liver. Biull. Eksp. Biol. Med. 991, 681-683.
  3. Dopico, A. M., Ríos, H., Mayo, J. and Zieher, L. M. 1990. Increased activity of tyrosine hydroxylase in the cerebellum of the x-irradiated dystonic rat. Mol. Chem. Neuropathol. 13, 129-143. https://doi.org/10.1007/BF03159914
  4. Emerit, J. and Chaudiere, J. 1989. CRC Hand Book of Free Radical and Antioxidants in Biomedicine, In Mique, J., Quintailha, A. T. and Weber, H. (eds.) Vol. 1. CRC Press, Boca Raton, FL, USA, 1-177.
  5. Foulon, O., Lalouette, F., Lambert, F., Martin, S., Fatôme, M. and Martin, C. 1999. Effect of neutron-gamma radiation on dopamine and serotonin metabolism in the rat brain: a regional analysis. J. Neurosci. Res. 55, 770-775. https://doi.org/10.1002/(SICI)1097-4547(19990315)55:6<770::AID-JNR11>3.0.CO;2-A
  6. Fridovich. 1986. Superoxide disfmutase. In: Methods of Enzymatic Analysis. Bergmyer ed. Vol. 58. Academic-Verlag, Berlin, Germany, 61-97.
  7. Gagnaire, B., Adam-Guillermin, C., Bouron, A. and Lestaevel, P. 2011. The effects of radionuclides on animal behavior. Rev. Environ. Contam. Toxicol. 210, 35-58. https://doi.org/10.1007/978-1-4419-7615-4_2
  8. Han, Y., Platonov, A. G., Akhalaia, M. I., Song, J. Y., Ahn, J. Y. and Yun, Y. S. 2005. Tissue-specific changes in heme oxygenase activity and level of nonprotein thiols in C57Bl/6 mice after whole-body gamma-irradiation. Bull. Exp. Biol. Med. 140, 341-344. https://doi.org/10.1007/s10517-005-0485-x
  9. Houpert, P., Lestaevel, P., Amourette, C., Dhieux, B., Bussy, C. and Paquet, F. 2004. Effect of U and 137Cs chronic contamination on dopamine and serotonin metabolism in the central nervous system of the rat. Can. J. Physiol. Pharmacol. 82, 161-166. https://doi.org/10.1139/y04-012
  10. ICRU. 2004. Report72. Dosimetry of Beta Rays and Low Energy Photons for Brachytherapy with Sealed Sources. J. ICRU 4, Appendix A: complication of physical data.
  11. Inaba, R., Shishido, K., Okada, A. and Moroji, T. 1992. Effects of whole body microwave exposure on the rat brain contents of biogenic amines. Eur. J. Appl. Physiol. Occup. Physiol. 65, 124-128. https://doi.org/10.1007/BF00705068
  12. Kassayova, M., Ahlersova, E., Pástorova, B. and Ahlers, I. 1995. The early response of pineal N-acetyltransferase activity, melatonin and catecholamine levels in rats irradiated with gamma rays. Physiol. Res. 44, 315-320.
  13. Kil, S. H., Kim, D. W., Lee, M. R., Ok, C. I., Moon, G. H., Lee, J. K., Cho, S. I. and Lee, J. O. 2008. Effects of irradiation on contractility changes of smooth muscles in the intestine of goldfish. Sae Mulli 56, 137-142.
  14. Kocmierska-Grodzka, D. and Gerber, G. B. 1975. Serotonin and proteolytic enzymes in brain of irradiated animals. Pol. J. Pharmacol. Pharm. 27, 119-125. https://doi.org/10.1111/j.2042-7158.1975.tb09419.x
  15. Kocmierska-Grodzka, D., Romatowska, A. and Szymanski, A. 1975. Investigations on the relations between the biochemical changes in the brain and behaviour of irradiated rats. Strahlentherapie. 150, 102-108.
  16. Kuhn, D. M. and Arthur Jr, R. E. 1996. Inactivation of brain tryptophan hydroxylase by nitric oxide. J. Neurochem. 67, 1072-1077.
  17. Kuhn, D. M. and Arthur Jr, R. E. 1997. Inactivation of tryptophan hydroxylase by nitric oxide: enhancement by tetrahydrobiopterin. J. Neurochem. 68, 1495-1502.
  18. Lavin, M. F. and Schroeder, A. L. 1988. Damage-resistent DNA synthesis in eukaryotes. Mutat. Res. 193, 193-206. https://doi.org/10.1016/0167-8817(88)90030-2
  19. Lett, J. T. 1990. Damage to DNA and chromatin structure from ionizing radiations, and the radiation sensitivities of mammalian cells. Prog. Nucleic Acid Res. Mol. Biol. 39, 305-352. https://doi.org/10.1016/S0079-6603(08)60630-3
  20. Matsuoka, O., Tsuchiya, T. and Furukawa, Y. 1962. The effect of X-irradiation on 5-hydroxytryptamine (Serotonin) contents in the small intestines of experimental animals. J. Radiation Res. 3, 104-108. https://doi.org/10.1269/jrr.3.104
  21. Moon, G. H., Ok, C. I., Cho, S. I., Lee, J. K., Kil, S. H., Seo, W. C., Lee, B. W., Sohn, H. Y., Go, H. J. and Park, N. G. 2008. Contractile activity of goldfish intestine exposed to $^{18}F$ isotope. J. Kor. Fish Soc. 41, 89-93. https://doi.org/10.5657/kfas.2008.41.2.089
  22. Moroji, T., Takahashi, K. and Ikeda, C. 1978. Levels of biogenic amines and their metabolites in rat whole brain after rapid tissue fixation with microwave irradiation (author's transl). No. to Shinkei 30, 1303-1308.
  23. Moore, A. H., Olschowka, J. A., Williams, J. P., Okunieff, P. and O'Banion, M. K. 2005. Regulation of prostaglandin E2 synthesis after brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 62, 267-272. https://doi.org/10.1016/j.ijrobp.2005.01.035
  24. Palaic, D. and Supek, Z. 1966. Liberation of 5-hydroxytryptamine in the brain stem of adrenalectomized rats after x-irradiation. Nature 210, 970-971. https://doi.org/10.1038/210970a0
  25. Stenfors, C., Bjellerup, P., Mathé, A. A. and Theodorsson, E. 1995. Concurrent analysis of neuropeptides and biogenic amines in brain tissue of rats treated with electroconvulsive stimuli. Brain Res. 698, 39-45. https://doi.org/10.1016/0006-8993(95)00784-N
  26. Vittorio, P. V., Wight, E. W. and Sinnott, B. E. 1963. A study of the protective action of serotonin (5-hydroxytryptamine) against whole-body x-irradiation in mice with the aid of chromium 51. Can. J. Biochem. Physiol. 41, 347-360. https://doi.org/10.1139/o63-044
  27. Wiberg, A., Adolfsson, R., Eckert, B. and Winblad, B. 1982. The activity of monoamine oxidases A and B in gamma-irradiated rabbit brains. Experientia 38, 71-73. https://doi.org/10.1007/BF01944534