DOI QR코드

DOI QR Code

Curcumin Inhibits Ovalbumin-Induced Inducible Nitric Oxide Synthase Expression

Curcumin은 ovalbumin에 의해서 유도된 inducible nitric oxide synthase 억제

  • Kim, Ji-Soo (Department of Biomedical Laboratory Science, SoonChunHyang University) ;
  • Ahn, Hee-Jin (Department of Biomedical Laboratory Science, SoonChunHyang University) ;
  • Shin, Hwa-Jeong (Department of Medical Science, SoonChunHyang University) ;
  • Gu, Gyo-Jeong (Department of Medical Science, SoonChunHyang University) ;
  • Eum, Sang-Hoon (Department of Biomedical Laboratory Science, SoonChunHyang University) ;
  • Lee, Chung-Ho (Department of Biomedical Laboratory Science, SoonChunHyang University) ;
  • Min, In-Soon (Department of Healthcare Management, SoonChunHyang University) ;
  • Youn, Hyung-Sun (Department of Biomedical Laboratory Science, SoonChunHyang University)
  • 김지수 (순천향대학교 임상병리학과) ;
  • 안희진 (순천향대학교 임상병리학과) ;
  • 신화정 (순천향대학교 의료과학과) ;
  • 구교정 (순천향대학교 의료과학과) ;
  • 엄상훈 (순천향대학교 임상병리학과) ;
  • 이청호 (순천향대학교 임상병리학과) ;
  • 민인순 (순천향대학교 보건행정경영학과) ;
  • 윤형선 (순천향대학교 임상병리학과)
  • Received : 2012.06.06
  • Accepted : 2012.07.04
  • Published : 2012.08.31

Abstract

Egg allergy has been reported as the most prevalent food hypersensitivity among children. One of the major egg allergens is ovalbumin (OVA). OVA is the major protein in the egg white, comprising 54% of its total protein content. Curcumin isolated from Curcuma longa has been used as folk remedies in order to treat many chronic diseases for many years. In the present report, we present biochemical evidence that curcumin inhibits the NF-${\kappa}B$ activation induced by OVA. Curcumin also inhibits OVA-induced iNOS expression and nitrite production. These data suggest new approaches for the development of efficient anti-allergic strategies.

본 연구에서 curcumin이 계란 알러젠 중의 하나인 OVA에 의해서 유도된 NF-${\kappa}B$ 활성화 및 iNOS 발현에 어떤 영향을 미치는지 알아보았다. Curcumin은 OVA에 의해서 유도된 NF-${\kappa}B$ 활성화와 iNOS 발현을 억제시켰다. 이러한 결과는 curcumin이 계란 알러젠인 OVA에 의해서 유도된 NF-${\kappa}B$의 활성화와 iNOS의 발현을 억제하여 염증반응이나 알러지와 같은 만성적인 질병들을 조절할 수 있다는 것을 보여주는 중요한 결과라 사료된다. 이러한 연구는 추후 알러지 작용기전 규명 및 알러지 치료제 개발에 중요한 역할을 할 것으로 기대한다.

Keywords

References

  1. Youn HS, Lee JY, Fitzgerald KA, Young HA, Akira S, Hwang DH. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: Molecular targets are TBK1 and RIP1 in TRIF complex. J. Immunol. 175: 3339-3346 (2005) https://doi.org/10.4049/jimmunol.175.5.3339
  2. Youn HS, Saitoh SI, Miyake K, Hwang DH. Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem. Pharmacol. 72: 62-69 (2006) https://doi.org/10.1016/j.bcp.2006.03.022
  3. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3: 768-780 (2003) https://doi.org/10.1038/nrc1189
  4. Zingarelli B, Sheehan M, Wong HR. Nuclear factor-$\kappa B$ as a therapeutic target in critical care medicine. Crit. Care Med. 31(1 Suppl): S105-S111 (2003) https://doi.org/10.1097/00003246-200301001-00015
  5. Youn HS, Lee JY, Saitoh SI, Miyake K, Kang KW, Choi YJ, Hwang DH. Suppression of MyD88- and TRIF-dependent signaling pathways of toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem. Pharmacol. 72: 850-859 (2006) https://doi.org/10.1016/j.bcp.2006.06.021
  6. Pan MH, Lin-Shiau SY, Lin JK. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of I$\kappa B$ kinase and NF$\kappa B$ activation in macrophages. Biochem. Pharmacol. 60: 1665-1676 (2000) https://doi.org/10.1016/S0006-2952(00)00489-5
  7. Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, Sartor RB. Curcumin blocks cytokine-mediated NF-$\kappa B$ activation and proinflammatory gene expression by inhibiting inhibitory factor I-$\kappa B$ kinase activity. J. Immunol. 163: 3474-3483 (1999)
  8. Brouet I, Ohshima H. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem. Bioph. Res. Co. 206: 533-540 (1995) https://doi.org/10.1006/bbrc.1995.1076
  9. Kang G, Kong PJ, Yuh YJ, Lim SY, Yim SV, Chun W, Kim SS. Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J. Pharmacol. Sci. 94: 325-328 (2004) https://doi.org/10.1254/jphs.94.325
  10. Mine Y, Yang M. Recent advances in the understanding of egg allergens: Basic, industrial, and clinical perspectives. J. Agr. Food Chem. 56: 4874-4900 (2008) https://doi.org/10.1021/jf8001153
  11. Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: Chemoprevention using food phytochemicals. Int. J. Cancer 121: 2357-2363 (2007) https://doi.org/10.1002/ijc.23161
  12. Vallance P. Nitric oxide: Therapeutic opportunities. Fund. Clin. Pharmacol. 17: 1-10 (2003) https://doi.org/10.1046/j.1472-8206.2003.00124.x
  13. Lee AN, Park SJ, Jeong AR, Lee JR, Park HJ, Kim SJ, Min IS, Youn HS. Ovalbumin induces cycloxygenase-2 and inducible nitric oxide synthase expression. Korean J. Food Sci. Technol. 43: 110-113 (2011) https://doi.org/10.9721/KJFST.2011.43.1.110
  14. Youn HS, Lee JY, Saitoh SI, Miyake K, Kang KW, Choi YJ, Hwang DH. Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem. Pharmacol. 72: 850-859 (2006) https://doi.org/10.1016/j.bcp.2006.06.021
  15. Youn HS, Lee JY, Saitoh SI, Miyake K, Hwang DH. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem. Bioph. Res. Co. 350: 866-871 (2006) https://doi.org/10.1016/j.bbrc.2006.09.097
  16. Lim HJ, Lee HS, Ryu JH. Suppression of inducible nitric oxide synthase and cyclooxygenase-2 expression by tussilagone from Farfarae flos in BV-2 microglial cells. Arch. Pharm. Res. 31: 645-652 (2008) https://doi.org/10.1007/s12272-001-1207-4
  17. Takeda K, Akira S. Toll-like receptors in innate immunity. Int. Immunol. 17: 1-14 (2005)
  18. Hanafy KA, Krumenacker JS, Murad F. NO, nitrotyrosine, and cyclic GMP in signal transduction. Med. Sci. Monitor 7: 801-819 (2001)
  19. Ignarro LJ. Physiology and pathophysiology of nitric oxide. Kidney Int. 55(Suppl): S2-S5 (1996)
  20. Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 369: 136-139 (1995) https://doi.org/10.1016/0014-5793(95)00763-Y
  21. Stamler JS, Lamas S, Fang FC. Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106: 675-683 (2001) https://doi.org/10.1016/S0092-8674(01)00495-0
  22. Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat. Res. 424: 37-49 (1999) https://doi.org/10.1016/S0027-5107(99)00006-8
  23. Green SJ, Meltzer MS, Hibbs JB Jr, Nacy CA. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. J. Immunol. 144: 278-283 (1990)
  24. Palmer RM, Hickery MS, Charles IG, Moncada S, Bayliss MT. Induction of nitric oxide synthase in human chondrocytes. Biochem. Bioph. Res. Co. 193: 398-405 (1993) https://doi.org/10.1006/bbrc.1993.1637
  25. Kun JF, Mordmuller B, Perkins DJ, May J, Mercereau-Puijalon O, Alpers M, Weinberg JB, Kremsner PG. Nitric oxide synthase 2(Lambarene) (G-954C), increased nitric oxide production, and protection against malaria. J. Infect. Dis. 184: 330-336 (2001) https://doi.org/10.1086/322037