References
- Youn HS, Lee JY, Fitzgerald KA, Young HA, Akira S, Hwang DH. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: Molecular targets are TBK1 and RIP1 in TRIF complex. J. Immunol. 175: 3339-3346 (2005) https://doi.org/10.4049/jimmunol.175.5.3339
- Youn HS, Saitoh SI, Miyake K, Hwang DH. Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem. Pharmacol. 72: 62-69 (2006) https://doi.org/10.1016/j.bcp.2006.03.022
- Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3: 768-780 (2003) https://doi.org/10.1038/nrc1189
-
Zingarelli B, Sheehan M, Wong HR. Nuclear factor-
$\kappa B$ as a therapeutic target in critical care medicine. Crit. Care Med. 31(1 Suppl): S105-S111 (2003) https://doi.org/10.1097/00003246-200301001-00015 - Youn HS, Lee JY, Saitoh SI, Miyake K, Kang KW, Choi YJ, Hwang DH. Suppression of MyD88- and TRIF-dependent signaling pathways of toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem. Pharmacol. 72: 850-859 (2006) https://doi.org/10.1016/j.bcp.2006.06.021
-
Pan MH, Lin-Shiau SY, Lin JK. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of I
$\kappa B$ kinase and NF$\kappa B$ activation in macrophages. Biochem. Pharmacol. 60: 1665-1676 (2000) https://doi.org/10.1016/S0006-2952(00)00489-5 -
Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, Sartor RB. Curcumin blocks cytokine-mediated NF-
$\kappa B$ activation and proinflammatory gene expression by inhibiting inhibitory factor I-$\kappa B$ kinase activity. J. Immunol. 163: 3474-3483 (1999) - Brouet I, Ohshima H. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem. Bioph. Res. Co. 206: 533-540 (1995) https://doi.org/10.1006/bbrc.1995.1076
- Kang G, Kong PJ, Yuh YJ, Lim SY, Yim SV, Chun W, Kim SS. Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J. Pharmacol. Sci. 94: 325-328 (2004) https://doi.org/10.1254/jphs.94.325
- Mine Y, Yang M. Recent advances in the understanding of egg allergens: Basic, industrial, and clinical perspectives. J. Agr. Food Chem. 56: 4874-4900 (2008) https://doi.org/10.1021/jf8001153
- Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: Chemoprevention using food phytochemicals. Int. J. Cancer 121: 2357-2363 (2007) https://doi.org/10.1002/ijc.23161
- Vallance P. Nitric oxide: Therapeutic opportunities. Fund. Clin. Pharmacol. 17: 1-10 (2003) https://doi.org/10.1046/j.1472-8206.2003.00124.x
- Lee AN, Park SJ, Jeong AR, Lee JR, Park HJ, Kim SJ, Min IS, Youn HS. Ovalbumin induces cycloxygenase-2 and inducible nitric oxide synthase expression. Korean J. Food Sci. Technol. 43: 110-113 (2011) https://doi.org/10.9721/KJFST.2011.43.1.110
- Youn HS, Lee JY, Saitoh SI, Miyake K, Kang KW, Choi YJ, Hwang DH. Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem. Pharmacol. 72: 850-859 (2006) https://doi.org/10.1016/j.bcp.2006.06.021
- Youn HS, Lee JY, Saitoh SI, Miyake K, Hwang DH. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem. Bioph. Res. Co. 350: 866-871 (2006) https://doi.org/10.1016/j.bbrc.2006.09.097
- Lim HJ, Lee HS, Ryu JH. Suppression of inducible nitric oxide synthase and cyclooxygenase-2 expression by tussilagone from Farfarae flos in BV-2 microglial cells. Arch. Pharm. Res. 31: 645-652 (2008) https://doi.org/10.1007/s12272-001-1207-4
- Takeda K, Akira S. Toll-like receptors in innate immunity. Int. Immunol. 17: 1-14 (2005)
- Hanafy KA, Krumenacker JS, Murad F. NO, nitrotyrosine, and cyclic GMP in signal transduction. Med. Sci. Monitor 7: 801-819 (2001)
- Ignarro LJ. Physiology and pathophysiology of nitric oxide. Kidney Int. 55(Suppl): S2-S5 (1996)
- Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 369: 136-139 (1995) https://doi.org/10.1016/0014-5793(95)00763-Y
- Stamler JS, Lamas S, Fang FC. Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106: 675-683 (2001) https://doi.org/10.1016/S0092-8674(01)00495-0
- Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat. Res. 424: 37-49 (1999) https://doi.org/10.1016/S0027-5107(99)00006-8
- Green SJ, Meltzer MS, Hibbs JB Jr, Nacy CA. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. J. Immunol. 144: 278-283 (1990)
- Palmer RM, Hickery MS, Charles IG, Moncada S, Bayliss MT. Induction of nitric oxide synthase in human chondrocytes. Biochem. Bioph. Res. Co. 193: 398-405 (1993) https://doi.org/10.1006/bbrc.1993.1637
- Kun JF, Mordmuller B, Perkins DJ, May J, Mercereau-Puijalon O, Alpers M, Weinberg JB, Kremsner PG. Nitric oxide synthase 2(Lambarene) (G-954C), increased nitric oxide production, and protection against malaria. J. Infect. Dis. 184: 330-336 (2001) https://doi.org/10.1086/322037