Antihypertensive Effects of Novel Isoflavone-Free Black Soy Peptide Mixture as HO-1 Inducer

Heme 산화효소 발현 유도체로서 Isoflavone-Free 검은콩 펩타이드의 항고혈압 활성

  • Shin, Mi-Kyung (Department of Pharmacology and Medicinal Toxicology Research Center, Center for Advanced Medical Education, Inha University College of Medicne by BK-21 Project, Inha University) ;
  • Kwon, Yong-Hyun (Department of Pharmacology and Medicinal Toxicology Research Center, Center for Advanced Medical Education, Inha University College of Medicne by BK-21 Project, Inha University) ;
  • Ahn, Chang-Won (R&BD Center, NongShim Co., Ltd.) ;
  • Shin, Dong-Seok (R&BD Center, NongShim Co., Ltd.) ;
  • Park, Soo-Hyun (R&BD Center, NongShim Co., Ltd.) ;
  • Choi, Bo-Hwa (Department of Pharmacology and Medicinal Toxicology Research Center, Center for Advanced Medical Education, Inha University College of Medicne by BK-21 Project, Inha University) ;
  • Hong, Soon-Sun (Department of Biomedical Sciences and Clinical Research Center, Inha University) ;
  • Kang, Ju-Hee (Department of Pharmacology and Medicinal Toxicology Research Center, Center for Advanced Medical Education, Inha University College of Medicne by BK-21 Project, Inha University) ;
  • Park, Chang-Shin (Department of Pharmacology and Medicinal Toxicology Research Center, Center for Advanced Medical Education, Inha University College of Medicne by BK-21 Project, Inha University)
  • 신미경 (인하대학교 의과대학 의학전문대학원 약리학교실 의약물독성연구소) ;
  • 권용현 (인하대학교 의과대학 의학전문대학원 약리학교실 의약물독성연구소) ;
  • 안창원 ((주)농심 R&BD 센터) ;
  • 신동석 ((주)농심 R&BD 센터) ;
  • 박수현 ((주)농심 R&BD 센터) ;
  • 최보화 (인하대학교 의과대학 의학전문대학원 약리학교실 의약물독성연구소) ;
  • 홍순선 (인하대학교 특성화교실 임상시험센터) ;
  • 강주희 (인하대학교 의과대학 의학전문대학원 약리학교실 의약물독성연구소) ;
  • 박창신 (인하대학교 의과대학 의학전문대학원 약리학교실 의약물독성연구소)
  • Received : 2012.05.18
  • Accepted : 2012.06.15
  • Published : 2012.06.30

Abstract

We previously reported that the novel isoflavone-free peptide mixture (black soybean peptide, BSP) had several beneficial effects like antiobesity and hypotriglyceridemic effect. However, there are no reports for BSP on anti-hypertensive activity. BSP induced heme oxygenase-1 (HO-1) in HUVECs, thus investigated the HO-1-induced activity in HUVECs and the anti-hypertensive effects in SHR animal model. BSP significantly induced HO-1 expression both at transcriptional and protein levels in a time- and dose-dependent manner as measured by RT-PCR and Western blot analysis, respectively. These inductions were abolished by pretreatment of N-acetyl-cystein (NAC, 1~10 mM), but not by employing Tempol, a superoxide dismutase (SOD) mimetic (1~5 mM). As expected, enzymatic activity (~2 fold) determined by bilirubin formation assay and cGMP concentration (~6 fold) were significantly increased in BSP-treated cells. Based on the numerous evidences on the beneficial effects of HO-1 and our results, we investigated in vivo effects of BSP on the antihypertensive activity. The administration of BSP (1% in drinking water) significantly decreased mean blood pressure (BP) (from $218.6{\pm}6.99$ to $190.0{\pm}3.42$ mm Hg, p<0.01). This result indicates that BSP is strong inducer of HO-1 expression, which may be triggered by oxidative stress, and has anti-hypertensive activity.

Keywords

References

  1. Redon, J., Cifkova, R., Laurent, S., Nilsson, P., Narkiewicz, K., Erdine, S. and Mancia, G. : Mechanisms of hypertension in the cardiometabolic syndrome. J. Hypertens. 27, 441 (2009).
  2. Bornstein, N., Silvestrelli, G., Caso, V. and Parnetti, L. : Arterial hypertension and stroke prevention: an update. Clin. Exp. Hypertens. 28, 317 (2006).
  3. Birkenhäger, W. H. and Staessen, J. A. : Progress in cardiovascular diseases: cognitive function in essential hypertension. Prog. Cardiovasc. Dis. 49, 1 (2006).
  4. Blacher, J., Baes, M., Marchal, A., Younes, W., Legedz, L. and Safar, M. : New treatment strategies for hypertension. Which guidelines and how to apply them. Presse. Med. 34, 1279 (2005).
  5. Panza, J. A., Casino, P. R., Badar, D. M. and Quyyumi, A. A. : Effect of increased availability of endothelium-derived nitric oxide precursor on endothelium-dependent vascular relaxation in normal subjects and in patients with essential hypertension. Circulation. 87, 1475 (1993).
  6. Cai, H. and Harrison, D. G. : Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 87, 840 (2000).
  7. Biswas, S. K. and de Faria, J. B. : Which comes first: renal inflammation or oxidative stress in spontaneously hypertensive rats? Free. Radic. Res. 41, 216 (2007).
  8. Miyagawa, K., Ohashi, M., Yamashita, S., Kojima, M., Sato, K., Ueda, R. and Dohi, Y. : Increased oxidative stress impairs endothelial modulation of contractions in arteries from spontaneously hypertensive rats. J. Hypertens. 25, 415 (2007).
  9. Sanchez, M., Galisteo, M., Vera, R., Villar, I. C., Zarzuelo, A., Tamargo, J., Perez-Vizcaino, F. and Duarte, J. : Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J. Hypertens. 24, 75 (2006).
  10. Duarte, J., Perez-Palencia, R., Vargas, F., Ocete, M. A., Perez- Vizcaino, F., Zarzuelo, A. and Tamargo, J. : Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br. J. Pharmacol. 133, 117 (2001).
  11. Aoi, W., Niisato, N., Miyazaki, H. and Marunaka, Y. : Flavonoidinduced reduction of ENaC expression in the kidney of Dahl salt-sensitive hypertensive rat. Biochem. Biophys. Res. Commun. 315, 892 (2004).
  12. Brune, B. and Ullrich, V. : Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol. Pharmacol. 32, 497 (1987).
  13. Johnson, R. A., Colombari, E., Colombari, D. S., Lavesa, M., Talman, W. T. and Nasjletti, A. : Role of endogenous carbon monoxide in central regulation of arterial pressure. Hypertension. 30, 962 (1997).
  14. Ryter, S. W. and Choi, A. M. : Heme oxygenase-1: molecular mechanisms of gene expression in oxygen-related stress. Antioxid. Redox. Signal. 4, 625 (2002).
  15. Abraham, N. G. and Kappas, A. : Heme oxygenase and the cardiovascular-renal system. Free. Radic. Biol. Med. 39, 1 (2005).
  16. Kim, H. P., Ryter, S. W. and Choi, A. M. : CO as a cellular signaling molecule. Annu. Rev. Pharmacol. Toxicol. 46, 411 (2006).
  17. Morita, T. : Heme oxygenase and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 25, 1786 (2005).
  18. Ndisang, J. F., Zhao, W. and Wang, R. : Selective regulation of blood pressure by heme oxygenase-1 in hypertension. Hypertension. 40, 315 (2002).
  19. Elmarakby, A. A., Faulkner, J., Posey, S. P. and Sullivan, J. C. : Induction of hemeoxygenase-1 attenuates the hypertension and renal inflammation in spontaneously hypertensive rats. Pharmacol. Res. 62, 400 (2010).
  20. Turkseven, S., Kruger, A., Mingone, C. J., Kaminski, P., Inaba, M., Rodella, L. F., Ikehara, S., Wolin, M. S. and Abraham, N. G. : Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes. AM. J. Physiol. Heart. Circ. Physiol. 289, H701 (2005).
  21. Ndisang, J. F., Tabien, H. E. and Wang, R. : Carbon monoxide and hypertension. J. Hypertens. 22, 1057 (2004).
  22. Rho, S. J., Park, S., Ahn, C. W., Shin, J. K. and Lee, H. G. : Dietetic and hypocholesterolaemic action of black soy peptide in dietary obese rats. J. Sci. Food. Agric. 87, 908 (2007).
  23. Jang, E. H., Moon, J. S., Ko, J. H., Ahn, C. W., Lee, H. H., Shin, J. K., Park, C. S. and Kang, J. H. : Novel black soy peptides with antiobesity effects: activation of leptin-like signaling and AMP-activated protein kinase. Int. J. Obes. 32, 1161 (2008).
  24. Jang, E. H., Ko, J. H., Ahn, C. W., Lee, H. H., Shin, J. K., Chang, S. J., Park, C. S. and Kang, J. H. : In vivo and in vitro application of black soybean peptides in the amelioration of endoplasmic reticulum stress and improvement of insulin resistance. Life Sci. 86, 267 (2010).
  25. Kim, K. H., Jin, L. H., Choo G. Y., Lee, H. J., Choi, B. H., Kwak J., Yoon S. M., Park, C. S. and Lee, T. : Nonselective blocking of the sympathetic nervous system decreases detrusor overactivity in spontaneously hypertensive rats. Int. J. Mol. Sci. 13, 5048 (2012).
  26. Gewaltig, M. T. and Kojda, G. : Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc. Res. 55, 250 (2002).
  27. Yetik-Anacak, G. and Catravas, J. D. : Nitric oxide and the endothelium: history and impact on cardiovascular disease. Vascul. Pharmacol. 45, 268 (2006).
  28. Ryter, S. W., Alam, J. and Choi, A. M. : Heme oxygenase-1/ carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 86, 583 (2006).
  29. Morrow, V. A.., Foufelle, F., Connell, J. M., Petrie, J. R., Gould, G. W. and Salt, I. P. : Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells. J. Biol. Chem. 278, 31629 (2003).
  30. Ford, R. J., Teschke, S. R., Reid, E. B., Durham, K. K., Kroetsch, J. T. and Rush, J. W. : AMP-activated protein kinase activator AICAR acutely lowers blood pressure and relaxes isolated resistance arteries of hypertensive rats. J. Hypertens. 30, 725 (2012).
  31. Huo, Y., Qiu, W. Y., Pan, Q., Yao, Y. F., Xing, K. and Lou, M. F. : Reactive oxygen species (ROS) are essential mediators in epidermal growth factor (EGF)-stimulated corneal epithelial cell proliferation, adhesion, migration, and wound healing. Exp. Eye. Res. 89, 876 (2009).
  32. Thandapilly, S. J., Louis, X. L., Yang, T., Stringer, D. M., Yu, L., Zhang, S., Wigle, J., Kardami, E., Zahradka, P., Taylor, C., Anderson, H. D. and Netticadan T. : Resveratrol prevents norepinephrine induced hypertrophy in adult rat cardiomyocytes, by activating NO-AMPK pathway. Eur. J. Pharmacol. 669, 217 (2011).