DOI QR코드

DOI QR Code

A Novel One-Pot Synthesis of Quinoxaline Derivatives in Fluorinated Alcohols

  • Khaksar, Samad (Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University) ;
  • Rostamnezhad, Fariba (Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University)
  • 투고 : 2012.02.13
  • 심사 : 2012.05.05
  • 발행 : 2012.08.20

초록

Hexafluoroisopropanol (HFIP) is explored as an effective medium for the synthesis of quinoxaline derivatives in high yields at room temperature. The solvent (HFIP) can be readily separated from reaction products and recovered in excellent purity for direct reuse.

키워드

참고문헌

  1. Lindsley, C. W.; Zhao, Z.; Leister, W. H.; Robinson, R. G.; Barnett, S. F.; Defeo-Jones, D.; Jones, R. E.; Hartman, G. D.; Huff, J. R.; Huber, H. E.; Duggan, M. E. Bioorg. Med. Chem. Lett. 2005, 15, 761. https://doi.org/10.1016/j.bmcl.2004.11.011
  2. Loriga, M.; Piras, S.; Sanna, P.; Paglietti, G. Farmaco 1997, 52, 157.
  3. Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2002, 45, 5604. https://doi.org/10.1021/jm020310n
  4. He, W.; Myers, M. R.; Hanney, B.; Spada, A. P.; Bilder, G.; Galzinski, H.; Amin, D.; Needle, S.; Page, K.; Jayyosi, Z.; Perrone, M. H. Bioorg. Med. Chem. Lett. 2003, 13, 3097. https://doi.org/10.1016/S0960-894X(03)00655-3
  5. Kim, Y. B.; Kim, Y. H.; Park, J. Y.; Kim, S. K. Bioorg. Med. Chem. Lett. 2004, 14, 541. https://doi.org/10.1016/j.bmcl.2003.09.086
  6. Katoh, A.; Yoshida, T.; Ohkanda, J. Heterocycles 2000, 52, 911. https://doi.org/10.3987/COM-99-S61
  7. Thomas, K. R. J.; Velusamy, M.; Lin, J. T.; Chuen, C. H.; Tao, Y. T. Chem. Mater. 2005, 17, 1860. https://doi.org/10.1021/cm047705a
  8. Dailey, S.; Feast, W. J.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L. J. Mater. Chem. 2001, 11, 2238. https://doi.org/10.1039/b104674h
  9. Sessler, J. L.; Maeda, H.; Mizuno, T.; Lynch, V. M.; Furuta, H. J. Am. Chem. Soc. 2002, 124, 13474. https://doi.org/10.1021/ja0273750
  10. Crossley, M. J.; Johnston, L. A. Chem. Commun. 2002, 1122.
  11. Yamaguchi, T.; Matsumoto, S.; Watanabe, K. Tetrahedron Lett. 1998, 39, 8311. https://doi.org/10.1016/S0040-4039(98)01859-0
  12. Dell, A.; William, D. H.; Morris, H. R.; Smith, G. A.; Feeney, J.; Roberts, G. C. K. J. Am. Chem. Soc. 1975, 97, 2497. https://doi.org/10.1021/ja00842a029
  13. Bailly, C.; Echepare, S.; Gago, F.; Waring, M. Anti-Cancer Drug Des. 1999, 15, 291.
  14. Sato, S.; Shiratori, O.; Katagiri, K. J. Antibiot. 1967, 20, 270.
  15. Beheshtiha, Y. S.; Heravi, M. M.; Saeedi, M.; Karimi, N.; Zakeri, M.; Hossieni, N. T. Synth. Commun. 2010, 40, 1216. https://doi.org/10.1080/00397910903062280
  16. Potewar, T. M.; Ingale, S. A.; Srinivasan, K. V. Synth. Commun. 2008, 38, 3601. https://doi.org/10.1080/00397910802054271
  17. Dong, F.; Kai, G.; Zhenghao, F.; Xinli, Z.; Zuliang, L. Catal. Commun. 2008, 9, 317. https://doi.org/10.1016/j.catcom.2007.07.003
  18. Porter, A. E. A. In Comprehensive Heterocyclic Chemistry; Katritsky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; pp 157-197.
  19. Brown, D. J. Quinoxalines: Supplement II. In The Chemistry of Heterocyclic Compounds; Taylor, E. C., Wipf, P., Eds.; John Wiley & Sons: New Jersey, 2004.
  20. Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.; Bhusare, S. R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183. https://doi.org/10.1016/j.tetlet.2005.08.080
  21. More, S. V.; Sastry, M. N. V.; Wang, C. C.; Yao, C. F. Tetrahedron Lett. 2005, 46, 6345. https://doi.org/10.1016/j.tetlet.2005.07.026
  22. Darabi, H. R.; Mohandessi, S.; Aghapoor, K.; Mohsenzadeh, F. Catal. Commun. 2007, 8, 389. https://doi.org/10.1016/j.catcom.2006.06.033
  23. Huang, T. K.; Wang, R.; Shi, L.; Lu, X. X. Catal. Commun. 2008, 9, 1143. https://doi.org/10.1016/j.catcom.2007.10.024
  24. Srinivas, C.; Kumar, C. N. S. S. P.; Rao, J. V.; Palaniappan, S. J. Mol. Catal. A: Chem. 2007, 265, 227. https://doi.org/10.1016/j.molcata.2006.10.018
  25. Heravi, M. M.; Bakhtiari, K.; Bamoharram, F. F.; Tehrani, M. H. Monatsh. Chem. 2007, 138, 465. https://doi.org/10.1007/s00706-007-0594-5
  26. Hazarika, P.; Gogoi, P.; Konwar, D. Synth. Commun. 2007, 37, 3447. https://doi.org/10.1080/00397910701489388
  27. Heravi, M. M.; Bakhtiari, K.; Oskooie, H. A.; Taheri, S. Heteroat. Chem. 2008, 19, 218. https://doi.org/10.1002/hc.20401
  28. Heravi, M. M.; Taheri, S.; Bakhtiari, K.; Oskooie, H. A. Catal. Commun. 2007, 8, 211. https://doi.org/10.1016/j.catcom.2006.06.013
  29. Meshram, H. M.; Ramesh, P.; Kumar, G. S.; Reddy, B. C. Tetrahedron Lett. 2010, 51, 4313. https://doi.org/10.1016/j.tetlet.2010.05.099
  30. More, S. V.; Sastry, M. N. V.; Yao, C.-F. Green Chem. 2006, 8, 91. https://doi.org/10.1039/b510677j
  31. Cai, J.-J.; Zou, J.-P.; Pan, X.-Q.; Zhang, W. Tetrahedron Lett. 2008, 49, 7386. https://doi.org/10.1016/j.tetlet.2008.10.058
  32. Alinezhad, H.; Tajbakhsh, M.; Salehian, F.; Biparva, P. Bull. Korean Chem. Soc. 2011, 32, 3720. https://doi.org/10.5012/bkcs.2011.32.10.3720
  33. Begue, J. P.; Bonnet-Delpon, D.; Crousse, B. Synlett 2004, 18.
  34. Povey, J. F.; Smales, C. M.; Hassard, S. J.; Howard, M. J. J. Struct. Biol. 2007, 157, 329. https://doi.org/10.1016/j.jsb.2006.07.008
  35. Westermaier, M.; Mayr, H. Org. Lett. 2006, 8, 4791. https://doi.org/10.1021/ol0618555
  36. Ratnikov, M. O.; Tumanov, V. V.; Smit, W. A. Angew. Chem., Int. Ed. 2008, 47, 9739. https://doi.org/10.1002/anie.200803927
  37. Westermaier, M.; Mayr, H. Chem. Eur. J. 2008, 14, 1638. https://doi.org/10.1002/chem.200701366
  38. De, K.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. J. Org. Chem. 2009, 74, 6260. https://doi.org/10.1021/jo9012699
  39. Nishiwaki, N.; Kamimura, R.; Shono, K.; Kawakami, T.; Nakayama, K.; Nishino, K.; Nakayama, T.; Takahashi, K.; Nakamura, A.; Hosokawa, T. Tetrahedron Lett. 2010, 51, 3590. https://doi.org/10.1016/j.tetlet.2010.05.014
  40. Choy, J.; Jaime-Figueroa, S.; Lara-Jaime, T. Tetrahedron Lett. 2010, 51, 2244. https://doi.org/10.1016/j.tetlet.2010.02.100
  41. Kuroiwa, Y.; Matsumura, S.; Toshima, K. Synlett 2008, 2523.
  42. Tanabe, H.; Ichikawa, J. Chem. Lett. 2010, 39, 248. https://doi.org/10.1246/cl.2010.248
  43. Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639. https://doi.org/10.1021/ol702279w
  44. Ben-Daniel, R.; de Visser, S. P.; Shaik, S.; Neumann, R. J. Am. Chem. Soc. 2003, 125, 12116. https://doi.org/10.1021/ja0364524
  45. Kobayashi, S.; Tanaka, H.; Amii, H.; Uneyama, K. Tetrahedron 2003, 59, 1547. https://doi.org/10.1016/S0040-4020(03)00047-4
  46. Neimann, K.; Neumann, R. Org. Lett. 2000, 2, 2861. https://doi.org/10.1021/ol006287m
  47. Ravikumar, K. S.; Zhang, Y. M.; Bégué, J. P.; Bonnet-Delpon, D. Eur. J. Org. Chem. 1998, 2937.
  48. Legros, J.; Crousse, B.; Bonnet-Delpon, D.; Begue, J. P. Eur. J. Org. Chem. 2002, 3290.
  49. Azzouzi-Zriba, K.; Bonnet-Delpon, D.; Crousse, B. J. Fluorine Chem. 2011, 132, 811. https://doi.org/10.1016/j.jfluchem.2010.12.014
  50. Heydari, A.; Khaksar, S.; Tajbakhsh, M. Synthesis 2008, 19, 3126.
  51. Heydari, A.; Khaksar, S.; Tajbakhsh, M. Tetrahedron Lett. 2009, 50, 77. https://doi.org/10.1016/j.tetlet.2008.10.106
  52. Heydari, A.; Khaksar, S.; Tajbakhsh, M.; Bijanzadeh, H. R. J. Fluorine Chem. 2009, 130, 609. https://doi.org/10.1016/j.jfluchem.2009.03.014
  53. Heydari, A.; Khaksar, S.; Tajbakhsh, M.; Bijanzadeh, H. R. J. Fluorine Chem. 2010, 131, 106. https://doi.org/10.1016/j.jfluchem.2009.10.003
  54. Heydari, A.; Khaksar, S.; Tajbakhsh, M.; Vahdat, S. M. J. Fluorine Chem. 2010, 131, 1377. https://doi.org/10.1016/j.jfluchem.2010.10.002
  55. Tajbakhsh, M.; Hosseinzadeh, R.; Alinezhad, H.; Ghahari, S.; Heydari, A.; Khaksar, S. Synthesis 2011, 490.
  56. Khaksar, S.; Heydari, A.; Tajbakhsh, M.; Vahdat, S. M. J. Fluorine Chem. 2010, 131, 1377. https://doi.org/10.1016/j.jfluchem.2010.10.002

피인용 문헌

  1. Nuclear-Chemical Synthesis of 1,4-Diazine Quaternary Salts vol.02, pp.02, 2013, https://doi.org/10.4236/ojsta.2013.22006
  2. An expedient “on-water” synthesis of quinoxalines vol.145, pp.10, 2014, https://doi.org/10.1007/s00706-014-1242-5
  3. Transition metal-free one-pot synthesis of nitrogen-containing heterocycles vol.20, pp.1, 2016, https://doi.org/10.1007/s11030-015-9596-0
  4. Nucleophilic Substitution on 2-Monosubstituted Quinoxalines Giving 2,3-Disubstituted Quinoxalines: Investigating the Effect of the 2-Substituent vol.21, pp.10, 2016, https://doi.org/10.3390/molecules21101304
  5. Design and Synthesis of Some New Quinoxaline-Based Heterocycles pp.0022152X, 2018, https://doi.org/10.1002/jhet.2978
  6. Fe3O4@FeSO4-MCM-41 Nanoparticles and Reusable Catalyst for the Synthesis of Quinoxalines in Solvent-free Conditions vol.10, pp.4, 2018, https://doi.org/10.1007/s12633-017-9651-9
  7. )-dithione: Synthesis and reactions vol.193, pp.6, 2018, https://doi.org/10.1080/10426507.2018.1424166
  8. Luminescent Anticancer Acenaphtho[1, 2‐b]quinoxaline: Green Synthesis, DFT and Molecular Docking Studies, Live‐Cell Imaging and Reactivity towards Nucleic Acid and Protein BSA vol.3, pp.19, 2018, https://doi.org/10.1002/slct.201800487
  9. Synthesis and Antimicrobial Activity of Some New Substituted Quinoxalines vol.24, pp.22, 2012, https://doi.org/10.3390/molecules24224198
  10. An environmentally benign attribute for the expeditious synthesis of quinoxaline and its derivatives vol.1198, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2019.07.005
  11. Solvent-mediated Highly Efficient Synthesis of [1,2,4]triazolo/benzimidazoloquinazolinone Derivatives vol.16, pp.8, 2012, https://doi.org/10.2174/1570179416666191018145142
  12. Organocatalytic Combinatorial Synthesis of Quinazoline, Quinoxaline and Bis(indolyl)methanes vol.23, pp.1, 2020, https://doi.org/10.2174/1386207323666191213123026
  13. A newly synthesized nitrogen‐rich derivative of bicyclic quinoxaline—Structural and conceptual DFT reactivity study vol.33, pp.6, 2012, https://doi.org/10.1002/poc.4055
  14. A Facile C‐H Insertion Strategy using Combination of HFIP and Isocyanides: Metal‐Free Access to Azole Derivatives vol.9, pp.11, 2012, https://doi.org/10.1002/ajoc.202000481
  15. A General Method for the Synthesis of 11H-Indeno[1,2-B]Quinoxalin- 11-Ones and 6H-Indeno[1,2-B]Pyrido[3,2-E]Pyrazin-6-One Derivatives Using Mandelic Acid as an Efficient Organo-Catalyst at Room Temper vol.8, pp.None, 2012, https://doi.org/10.2174/2213337208666210825112301
  16. Novel Synthetic Routes to Prepare Biologically Active Quinoxalines and Their Derivatives: A Synthetic Review for the Last Two Decades vol.26, pp.4, 2012, https://doi.org/10.3390/molecules26041055
  17. A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature vol.51, pp.7, 2012, https://doi.org/10.1080/00397911.2021.1873383
  18. Silica supported dodecatungstophosphoric acid (DTP/SiO2): An efficient and recyclable heterogeneous catalyst for rapid synthesis of quinoxalines vol.51, pp.16, 2012, https://doi.org/10.1080/00397911.2021.1939060
  19. Csp-Csp bond cleavage and fragment coupling: a transition metal-free “extrusion and recombination” approach towards synthesis of 1,2-diketones vol.8, pp.19, 2021, https://doi.org/10.1039/d1qo00848j