DOI QR코드

DOI QR Code

Acridine Fluorescence Behaviors in Different Polymeric Microenvironments Directed by C2-Proton-Acidity of Imidazolium-Based Ionic Liquids

  • Ji, Myoung-Jin (Department of Chemistry, Dankook University) ;
  • Kim, Jong-Gyu (Department of Chemistry, Dankook University) ;
  • Shin, Ueon-Sang (Institute of Tissue Regeneration Engineering (ITREN), Dankook University)
  • 투고 : 2012.03.16
  • 심사 : 2012.04.24
  • 발행 : 2012.08.20

초록

A new fluorescent system (acridine/RTIL hybrid gel) confined in the 3D micro-structure of a poly(lactic acid) membrane were prepared from 1-butyl-3-methylimidazolium-based ionic liquids ([bmim]X (X = $SbF_6$, $NTf_2$, Cl); RTILs), poly(lactic acid) (PLA), and acridine via the sol-gel route. SEM images showed that, in the presence of [bmim]$SbF_6$ and [bmim]$NTf_2$, 3D-ly paticulated structures were created inside the PLA membranes and acridine/RTIL hybrid gels were confined in gabs of particulates. However, the use of [bmim]Cl induced the formation of a 3D-ly porous structure containing the hybrid gel of acridine/[bmimCl in the micropores. The three fluorescent systems exhibited different fluorescence behaviors (fluorescence maximum and intensity) depending on the C2-H acidity scale of the RTILs (or their anion type). Acridine gels hybridized with [bmim]$SbF_6$ and [bmim]$NTf_2$ showed blue fluorescence with relative high intensity, whereas the hybrid gel with [bmim]Cl exhibited almost no fluorescence under dry conditions. However, the acridine/[bmim]Cl hybrid system in the micro-porous PLA membrane started to emit fluorescent light under humid conditions and showed a possible response, indicating that it could be applied as a humidity sensor.

키워드

참고문헌

  1. Duca, M.; Dozza, B.; Lucare, E.; Santi, S.; Giorgio, A. D. Chem. Commun. 2010, 46, 7948. https://doi.org/10.1039/c0cc01918f
  2. Soini, A. E.; Kuusisto, A.; Meltola, N. J.; Soini, E.; Seveus, L. Microscopy Research and Technique 2003, 62, 396. https://doi.org/10.1002/jemt.10389
  3. Patra, A.; Baker, G. A.; Baker, S. N. J. Lumin. 2005, 111, 105. https://doi.org/10.1016/j.jlumin.2004.06.008
  4. Wang, H.; Gian, G.; Wang, M.; Zhang, J.; Luo, Y. J. Phys. Chem. B 2004, 108, 8084.
  5. Li, G.; Tobin, J. A.; Denton, D. D. Appl. Phys. Lett. 1993, 62, 1582. https://doi.org/10.1063/1.108645
  6. Markham, J. P.; Namdas, E. B.; Anthopoulos, T. D.; Samuel, D. W.; Richards, G. J.; Burn, P. L. Appl. Phys. Lett. 2004, 85, 1463. https://doi.org/10.1063/1.1784521
  7. Zhu, Y.; Elim, H. I.; Foo, Y.-L.; Yu, T.; Liu, Y.; Ji, W.; Lee, J.-Y.; Shen, Z.; Wee, A. T.-S.; Thong, J. T.-L.; Sow, C.-H. Adv. Mater. 2006, 18, 587. https://doi.org/10.1002/adma.200501918
  8. Romines, K. R.; Morris, J. K.; Howe, W. J.; Tomich, P. K.; Horng, M.-M.; Chong, K.-T.; Hinshaw, R. R.; Anderson, D. J.; Strohbach, J. W.; Turner, S.-R.; Miszak, S. A. J. Med. Chem. 1996, 39, 4125. https://doi.org/10.1021/jm960296c
  9. Coumarins-Biology, Applications and Mode of Action; Kennedy, R. O., Thornes, R. D., Eds.; Wiley: Chichester, 1997.
  10. Raue, R. In Ullmannns Encyclopedia of Industrial Chemistry, 5th ed.; Elvers, B., Hawkins, S., Schulz, G., Eds.; VCH: Weinheim, 1990; Vol. A15, p 155.
  11. Koefod, R. S.; Mann, K. R. Inorg. Chem. 1989, 28, 2285. https://doi.org/10.1021/ic00311a009
  12. Ryan, E. T.; Xiang, T.; Johnston, K. P.; Fox, M. A. J. Phys. Chem. A 1997, 101, 1827. https://doi.org/10.1021/jp962676f
  13. Welton, T. Chem. Rev. 1999, 99, 2071. https://doi.org/10.1021/cr980032t
  14. Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667. https://doi.org/10.1021/cr010338r
  15. Sheldon, R. Chem. Commun. 2001, 2399.
  16. Song, C. E. Chem. Commun. 2004, 1033.
  17. Lee, B. S.; Chi, Y. S.; Lee, J. K.; Choi, I. S.; Song, C. E.; Namgoong, S. K.; Lee, S. G. J. Am. Chem. Soc. 2004, 126, 480. https://doi.org/10.1021/ja038405h
  18. Kim, Y.-J.; Streitwieser, A. J. Am. Chem. Soc. 2002, 124, 5757. https://doi.org/10.1021/ja025628j
  19. Elaiwi, A.; Hitchcock, P. B.; Seddon, K. R.; Srinivasan, N.; Tan, Y.-M.; Welton, T.; Zola, J. A. J. Chem. Soc. Dalton Trans. 1995, 3467.
  20. Hitchcock, P. B.; Seddon, K. R.; Welton, T. J. Chem. Soc. Dalton Trans. 1993, 2639.
  21. Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc. Chem. Commun. 1992, 965.
  22. Dymek, C. J., Jr.; Grossie, D. A.; Frafini, A. V.; Adams, W. W. J. Mol. Structure 1989, 213, 25. https://doi.org/10.1016/0022-2860(89)85103-8
  23. Abdul-Sada, A. K.; Greenway, A. M.; Hithchcock, P. B.; Mohammed, T. J.; Seddon, K. R.; Zeta, J. A. J. Chem. Soc. Chem. Commun. 1986, 1753.
  24. Fuller, F.; Carlin, R. T.; De Long, H. C.; Haworth, D. J. Chem. Soc. Chem. Commun. 1994, 299.
  25. Aveat, A. G.; Chaloner, P. A.; Day, M. P.; Seddon, K. R.; Welton, T. J. Chem. Soc. Dalton Trans. 1994, 3405.
  26. Dieter, K. M.; Dymek, C. J., Jr.; Heimer, N. E.; Rovang, J. W.; Wilkes, J. S. J. Am. Chem. Soc. 1986, 110, 2722.
  27. Lee, H.-Y.; W, J.-E.; Shin, U. S.; K, H.-W. Materials Letters 2011, 65, 2114. https://doi.org/10.1016/j.matlet.2011.04.007
  28. Yoon, M. Y.; Kim, J. H.; Choi, D. S.; Shin, U. S.; Lee, J. Y.; Song, C. E. Adv. Synth. Catal. 2007, 349, 1725. https://doi.org/10.1002/adsc.200700039
  29. Choi, D. S.; Kim, D. H.; Shin, U. S.; Deshmukh, R. R.; Lee, S. G.; Song, C. E. Chem. Commun. 2007, 3467.
  30. Deshmukh, R. R.; Lee, J. W.; Shin, U. S.; Lee, J. Y.; Song, C. E. Angew. Chem. Int. Ed. 2008, 47, 8615. https://doi.org/10.1002/anie.200803850
  31. Shin, U. S.; Hong, H.-K.; Kim, H.-W.; Gong, M.-S. Bull. Korean Chem. Soc. 2011, 32, 1583. https://doi.org/10.5012/bkcs.2011.32.5.1583
  32. Alder, R. W.; Allen, P. R.; Williams, S. J. J. Chem. Soc. Chem. Commun. 1995, 1267.
  33. Cheng, C.; Tian, Y.; Shi, Y.; Tang, R.; Xi, F. Macromol. Rapid Commun. 2005, 26, 1266. https://doi.org/10.1002/marc.200500268
  34. Barner-Kowollik, C.; Davis, T. P.; Heuts, J. P. A.; Stenzel, M. H.; Vana, P.; Whittaker, M. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 365. https://doi.org/10.1002/pola.10567
  35. Borisov, M. S.; Waldhier, C. M.; Klimant, I.; Wolfbeis, O. S. Chemistry of Materials 2007, 19, 6187. https://doi.org/10.1021/cm7019312
  36. Oter, O.; Ertekin, K.; Derinkuyu, S. Talanta 2008, 76, 557. https://doi.org/10.1016/j.talanta.2008.03.047
  37. Oter, O.; Ertekin, K.; Derinkuyu, S. Mater. Chem. Phys. 2009, 13, 322.
  38. Poplin, J. H.; Swatloski, R. P.; Holbrey, J. D.; Spear, S. K.; Metlen, A.; Gratzel, M.; Nazeeruddin, M. K.; Rogers, R. D. Chem. Commun. 2007, 20, 2025.
  39. Wei, X.; Yu, L.; Jin, X.; Wang, D.; Chen, G. Z. Adv. Mater. 2009, 21, 776. https://doi.org/10.1002/adma.200801816
  40. Negron-Encarnacion, I.; Arce, R.; Jimenez, M. J. Phys. Chem. A 2005, 109, 787. https://doi.org/10.1021/jp045758+
  41. Wehry, E. L. In Practical Fluorescence; Guilbault, G. G., Ed.; Marcel Dekker, Inc: New York, 1990.
  42. Ireland, J. F.; Wyatt, P. A. H. Adv. Phys. Org. Chem. 1976, 12, 131. https://doi.org/10.1016/S0065-3160(08)60331-7

피인용 문헌

  1. -Sulfonatocalix[6]arene-Encapsulated Acridine vol.16, pp.2, 2015, https://doi.org/10.1002/cphc.201402591
  2. tuning and dye relocation into live cells vol.15, pp.39, 2017, https://doi.org/10.1039/C7OB02135F
  3. -lactic acid) with ionic liquids as solvents and porogens pp.00218995, 2019, https://doi.org/10.1002/app.47058
  4. Production of CNT-taxol-embedded PCL microspheres using an ammonium-based room temperature ionic liquid: As a sustained drug delivery system vol.442, pp.None, 2015, https://doi.org/10.1016/j.jcis.2014.11.044
  5. Spectroscopic properties and amplified spontaneous emission of fluorescein laser dye in ionic liquids as green media vol.47, pp.None, 2012, https://doi.org/10.1016/j.optmat.2015.06.045
  6. Highly Sensitive Humidity Sensor Based on Ionic Liquid-Polymer Composites vol.1, pp.10, 2012, https://doi.org/10.1021/acsapm.9b00675